X Toolkit Intrinsics —
C Language Interface

X Window System

Joel McCormack, Digital Equipment Corporation
Paul Asente, Digital EQuipment Corporation
Ralph R. Swick, Digital Equipment Corporation

X Toolkit Intrinsics — C Language Interface: X Window System
by Joel McCormack, Paul Asente, and Ralph R. Swick

X Version 11, Release 7.7

X Toolkit Intrinsics Version 1.2.1

XWindow System is atrademark of X Consortium, Inc.
Copyright © 1985, 1986, 1987, 1988, 1991, 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other
dealings in this Software without prior written authorization from the X Consortium.

Copyright © 1985, 1986, 1987, 1988, 1991, 1994 Digital Equipment Corporation, Maynard, M assachusetts.

Permission to use, copy, modify and distribute this documentation for any purpose and without fee is hereby granted, provided that the above
copyright notice appearsin all copies and that both that copyright notice and this permission notice appear in supporting documentation, and
that the name of Digital not be used in in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. Digital makes no representations about the suitability of the software described herein for any purpose. It is provided “as is”
without express or implied warranty.

Acknowledgments

Acknowledgmentsfor X11R7

This update to the X 11 Intrinsics drops support for K&R C, as well asimproving its use of
Standard C features, notably const.

» Matt Dew did theinitial conversion of this specification from nroff to DocBook.

Later, | expanded on that, improving the formatting, as well as updating the function
prototypes in the specification as well as the related manual pages.

» Matthieu Herrb modified the Intrinsics header files to drop support for K&R C, leaving
the Standard C prototypes.

Later, he applied my changes to complete the conversion of the library source from a
mixture of K& R C and Standard C to just use the standard language features.

» Others (including Alan Coopersmith, Gaetan Nadon, Walter Harms, and Kevin E. Martin)
have worked to maintain the library's build-scripts and documentation.

Thomas E. Dickey
invisible-island.net
April 2019

Acknowledgmentsfor X11R6

The design of the X11 Intrinsics was done primarily by Joel McCormack of Digital WSL.
Major contributions to the design and implementation also were done by Charles Haynes,
Mike Chow, and Paul Asente of Digital WSL. Additional contributors to the design and/or
implementation were:

Loretta Guarino-Reid (Digital WSL) Rich Hyde (Digital WSL)

Susan Angebranndt (Digital WSL) Terry Weissman (Digital WSL)
Mary Larson (Digital UEG) Mark Manasse (Digital SRC)
Jim Gettys (Digital SRC) Leo Treggiari (Digital SDT)
Ralph Swick (Project Athena and Digital Mark Ackerman (Project Athena)
ERP)

Ron Newman (Project Athena) Bob Scheifler (MIT LCS)

The contributorsto the X10 tool kit al so deserve mention. Although the X11 Intrinsics present
an entirely different programming style, they borrow heavily from the implicit and explicit
concepts in the X 10 toolkit.

The design and implementation of the X10 Intrinsics were done by:

Terry Weissman (Digital WSL)
Smokey Wallace (Digital WSL)
Phil Karlton (Digital WSL)
Charles Haynes (Digital WSL)
Frank Hall (HP)

The design and implementation of the X10 toolkit’s sample widgets were by the above, as
well as by:

Acknowledgments

Ram Rao (Digita UEG)

Mary Larson (Digital UEG)
Mike Gancarz (Digital UEG)
Kathleen Langone (Digital UEG)

These widgets provided a checklist of requirements that we had to address in the X11
Intrinsics.

Thanksgoto Al Mento of Digital’s UEG Documentation Group for formatting and generally
improving this document and to John Ousterhout of Berkeley for extensively reviewing early
drafts of it.

Finally, a specia thanks to Mike Chow, whose extensive performance analysis of the X10
toolkit provided the justification to redesign it entirely for X11.

Joel McCormack

Western Software Laboratory
Digital Equipment Corporation
March 1988

The current design of the Intrinsics has benefited greatly from the input of several dedicated
reviewers in the membership of the X Consortium. In addition to those already mentioned,
the following individuals have dedicated significant time to suggesting improvements to the
Intrinsics:

Steve Pitschke (Stellar)
Bob Miller (HP)

Fred Taft (HP)

Marcel Meth (AT&T)
Mike Callins (Digital)
Scott McGregor (Digital)
Julian Payne (ESS)
Gabriel Beged-Dov (HP)

C. Doug Blewett (AT&T)

David Schiferl (Tektronix)

Michael Squires (Sequent)

Jim Fulton (MIT)

Kerry Kimbrough (Texas | nstruments)
Phil Karlton (Digital)

Jacques Davy (Bull)

Glenn Widener (Tektronix)

Thanks go to each of them for the countless hours spent reviewing drafts and code.

Ralph R. Swick

External Research Group
Digital Equipment Corporation
MIT Project Athena

June 1988

From Release 3 to Release 4, several new members joined the design team. We greatly
appreciate the thoughtful comments, suggestions, lengthy discussions, and in some cases
implementation code contributed by each of the following:

Don Alecci (AT&T)
Donna Converse (MIT)
Nayeem Islam (Sun)
Keith Packard (MIT)
Richard Probst (Sun)

Ellis Cohen (OSF)
Clive Feather (1XI)
DanaLaursen (HP)
Chris Peterson (MIT)
Larry Cable (Sun)

Acknowledgments

In Release 5, the effort to define the internationalization additions was headed by Bill
McMahon of Hewlett Packard and Frank Rojas of IBM. This has been an educational process
for many of us, and Bill and Frank’s tutelage has carried us through. Vania Joloboff of the
OSF aso contributed to the internationalization additions. The implementation efforts of
Bill, Gabe Beged-Dov, and especially Donna Converse for this release are also gratefully
acknowledged.

Ralph R. Swick
December 1989
and

July 1991

The Release 6 Intrinsics is a result of the collaborative efforts of participants in the X
Consortium’s intrinsics working group. A few individuals contributed substantial design
proposals, participated in lengthy discussions, reviewed final specifications, and in most
cases, were also responsible for sections of the implementation. They deserve recognition
and thanks for their major contributions:

Paul Asente (Adobe) Larry Cable (SunSoft)

Ellis Cohen (OSF) Daniel Dardailler (OSF)

Vania Joloboff (OSF) Kaleb Keithley (X Consortium)
Courtney Loomis (HP) Douglas Rand (OSF)

Bob Scheifler (X Consortium) Ajay Vohra (SunSoft)

Many others analyzed designs, offered useful comments and suggestions, and participated
in a significant subset of the process. The following people deserve thanks for their
contributions: Andy Bovingdon, Sam Chang, Chris Craig, George Erwin-Grotsky, Keith
Edwards, Clive Feather, Stephen Gildea, Dan Heller, Steve Humphrey, David Kaelbling,
Jaime Lau, Rob Lembree, Stuart Marks, Beth Mynatt, Tom Paquin, Chris Peterson, Kamesh
Ramakrishna, Tom Rodriguez, Jim VanGilder, Will Walker, and Mike Wexler.

| am especially grateful to two of my colleagues: Ralph Swick for expert editorial guidance,
and Kaleb Keithley for leadership in the implementation and the specification work.

Donna Converse
X Consortium
April 1994

Table of Contents

ADOUL THIS IMANUAL ...ttt et e e e e iX
1. INErNSICS @NA WIAGELS ...t ettt e e et e e s 1
INIEFINSICS ..ttt ettt e e 1
(=00 0= L= PP PPN 1
ProcedureS @0 IMECTOSuuuiiiiti ettt ettt e e e e et e e e e e eeaans 1
MV GELS ..ttt 2
COrE WIGELS ...ttt ettt ettt e ettt e e e et e e eeaa e eeees 2
COMPOSITE WIGELS ...eeeeee ettt e e e e e eees 6
CoNSIraiNt WIAGELS ...ttt e eeeens 8
Implementation-SPECITIC TYPES ... it 10
WIAQEL ClIASSING .. eevtiieeiii ettt ettt e e e et e et e e e s 11
Widget Naming CONVENLIONSuuiiiiiiieeiiii et e et e et e e eer e e eeneaeeees 11
Widget Subclassing in PUblic .h FIlES ..o, 12
Widget Subclassing in Private .h FileSooiiiiiiiii e 13
Widget Subclassing in .C FIlES ..o 14
Widget Class and Superclass LOOK Upeveiiiiiiiiiiieiiiieecei e 17
Widget SubClass VerifiCationveiiiiiiiiiiii e 17
SUPErClass ChaiNIMNGcc.uuuiiiiie e 18
Class Initidization: class_initialize and class_part_initialize Procedures 19
INitializing @ WIdQet Classoovieiiiiiiiiiie e 20
Inheritance of Superclass OPEratioNnsSooeveuuuieiiiiiieei e 21
Invocation of SUPErclass OPErationsvevereiieiiiie et 22
Class EXIENSION RECOMSccvvuieiiiiieeeeii ettt 22
2. Widget INSEANLIEITONeeueieeei ettt e e et e e e e e es 25
Initializing the X TOOIKItcooiiie e 25
Establishing the LOCAIEiiiiiiicee e 28
Loading the ReSOUrCe Dal@asecvvvuuneiiiiii et 29
Parsing the Command LiNecoouuniiiiiiiie e 32
Crealing WILGELS ...ttt e e e e 34
Creating and Merging Argument ListSuvvviiiiiieiiiiieeeii e 34
Creating a Widget INSTANCEoovuiiiiiiiieecii e 36
Creating an Application Shell INStanCceoovvvviiiiiiii e, 38
Convenience Procedure to Initialize an Applicationccccoevveiiiinieiiiiinneeene, 39
Widget Instance Allocation: The allocate Procedureocevvviiieiiiiinieiiiiinnenes 41
Widget Instance Initialization: The initialize Procedurecccooevviiiiineciennnnn. 42
Constraint Instance Initialization: The ConstraintClassPart initialize Procedure 43
Nonwidget Data Initialization: The initialize_hook Procedureccccooeevevennen. 44
REAIIZING WILGELS ...ttt 44
Widget Instance Window Creation: The realize Procedurecccoevvvviieeiennnnnn. 45
Window Creation Convenience ROULINEcoeuuuiiiiiiiieeiiiieeee e 46
Obtaining Window Information from aWidgetcooeveeiiiiiiiiii e 47
UNrealizing WIGQELScoeeeie et 48
DeStroying WIOGELSceeeieiiiiii ettt 48
Adding and Removing Destroy Callbackscoouiiiiiiiiiiiiii e 50
Dynamic Data Desllocation: The destroy Procedure ..., 50
Dynamic Constraint Data Deall ocation: The ConstraintClassPart destroy
PrOCEOUNE ... ettt e e e b 50
Widget Instance Deallocation: The deallocate Procedureoovevvvviiieeiiiinnenes 51
Exiting from an APPIICEALIONco.uuiiiiiiii e 51
3. Composite Widgets and Their Childrenoooovuiiiiiii e 52
Addition of Children to a Composite Widget: The insert_child Procedure 53
Insertion Order of Children: The insert_position Procedureccoovvveviiiieiiiiineeennns 53
Deletion of Children: The delete child Procedurecooviiiiiiiiiiiiiiiceee e, 54
Adding and Removing Children from the Managed Sefcccoiviiiiiiiieiiiiinee, 54
Managing ChilArenoouuii e 54

X Toolkit Intrinsics —
C Language Interface

Unmanaging Children ... 56
Bundling Changes to the Managed Setcoooeiiiiiiiiiiinc e, 56
Determining if aWidget IsManagedcooeviiiiiiiiiii e 58
Controlling When Widgets Get Mappedoevviiiiiiiiiiii e 58
Constrained CompoSite WIQELScouuiiiiiiiiii e e e eaes 59
S 4 1c VAV (o= N 61
Shell Widget DEfiNITIONSoiieiiiiii e e e e aaaas 61
ShellClassPart DEfiNITIONSuuiiiiiiiieiiiii e eaeens 62
ShellPart DEfiNItIONuiiiiiiec e 65

ShEll RESOUICESvuiieiiii e e s 68
ShellPart Default ValUESuuieiiiiii e 70
SESSION PartiCIPalionccuuieiiieiii e e e e 75
o aTHgTo = TS == T o o 75
Saving APPlICAHON SEAEEu.iiii e e 76
Responding t0 @ SNULAOWNcovuiiiii e 79
ReSIgNING fromM @ SESSIONuuiiiiiiiiee e e e e e e e e 79

LI oo et o AV T o= PN 80
o o BT IV o o= A)Y o= R 80
Creating a Pop-Up ShEll .. oo 8l
Creating Pop-Up Childrenoouiiiiii e e 82
Mapping a Pop-UpP WIAGELuuiii e e 82
Unmapping a Pop-Up WIAGELoiiiiiii e 84
6. GEOMELTY MaANAGEIMENE ...uititit ittt e et e e e et e et e et n e e eanenes 86
Initiating GEOMELTY ChaNGEScvvviiiii e e e e e e e e e e e e e e ean s 86
General Geometry Manager REJUESEScvvvuiiiiiiiii e e e e e e e e e e 86
RESIZE REGUESES ..ottt et e e e e e e e e e e a s 88
Potential GEOMELTY ChanGgESuuiiiiieiiiee e e e e e e e e e e e e e e aaeees 89
Child Geometry Management: The geometry_manager Procedureccoocevvveennnennn. 89
Widget Placement and SIZINGocevvniiiinieiiiieeie e e e e e e e e e e e e e 91
Preferred GEOMEITYciviiiiii e e e e e et e e e e et e e et e e e e eaaeees 92
Size Change Management: The resize ProCcetdurec.ooveviieeiiiieiiii e 94
7. EVENE MANagBmMENT .. ovuieiii et 95
Adding and Deleting Additional EVENt SOUICESccvvuieiiieeiiieeeiiieeiie e e e e 95
Adding and ReEmMoVIiNg INPUE SOUFCESuuuiiviieiiiieiiii e e ee e e e et e e e eees 95
Adding and Removing Blocking Notificationsccooovviiiiiiiiiiiiein e, 96
Adding and ReEMOVING TIMEOULSevvvnieiiiieiiieeiii e e e e e e e e e e e eeas 97
Adding and Removing Signal Callbacksccoiviiiiiiiiii e, 98
Constraining Events to a Cascade of WIdgELSoevviiiiiiiiiii e, 99
Requesting Key and BUttoN Grabscooveiiiiiiiiiicii e 100
Focusing Events on @ Childoiiiiiiiiii e 103
Events for Drawables That Are Not a Widget's Windowc.ccoeveviiieiinnennnnn. 104
QUENYING EVENE SOUICESivviiiii et ee e e e et e e e e e e e et e e e e et e et eeaaeaaanaaes 105
DisSpatChiNg EVENESceiiiiiii e e e e e e e e e e e e e e eaen 106
The Application INPUE LOOPuuiiieeiii e e e e e e e e e e e e e 107
Setting and Checking the Sensitivity State of aWidgetcccovvviiiieiiiiiiiiiieeee, 107
Adding Background Work ProCedUreSuoeviiieiiiiiiii e e 108
D S 0| 11 = TSP 109
Pointer Motion COMPIESSIONueiiiiieiiieeeiie e e e e e e e e e e e st e e eaanaeees 109
Enter/Leave COMPIrESSIONuuiiii e e eei e e e e e e e e s e e e et e e et e e et e e eeanns 109
EXPOSUrE COMPIESSIONuuiiiieiiieeiieeei e e e e e e et e e et e e et e et e e et e e st e eaaneeaens 109
Widget Exposure and Visibility ..o 111
Redisplay of a Widget: The expose Procedureccooevviiieiiiiciinccie e, 111
WIGEL VISIDHITY ©ovneiiiiiice e 112

D = 01 =T = PP 112
Event Handlers That Select EVENtScocvvuiiiiiiiiiiiii e 112
Event Handlers That Do Not SeleCt EVENtScccvvviiviiiiieiiiiii e 114
CUITENt EVENE IMASK ...ceieiii et e e e e ea e e eaanns 116
Event Handlers for X11 Protocol EXTENSIONSoevvvviieiiiiinieriiiineeeeiiie e 116

X Toolkit Intrinsics —
C Language Interface

Using the Intrinsics in a Multi-Threaded ENvironmentccoocoiviiiiieiiineciiineiineens 120
Initializing a Multi-Threaded Intrinsics Applicationcooevviieeiiiieiiiieeieennn, 120
Locking X ToolKit Data StrUCIUIESuviiiieiieeci e e e e e e e e e 120
Event Management in a Multi-Threaded Environmentcccoooiiieviiiniinnenn, 122

8. CAllBACKS ...t 123

Using Callback Procedure and Callback List Definitionsc.cccovevvviviiiiieiiin e, 123

Identifying Callback ListScccuuiiiiiiiiiii i e e e 124

Adding Callback ProCeaUIESoiiuiiiiii e 124

Removing Callback ProCeOUIEScouuiiiiii e 124

Executing Callback ProCeAUIESuiiiiiiiiii i 125

Checking the Status of a Callback Listccuveiiiiiiiiiiiieci e 126

9. RESOUICE MaANAGEIMENT ...ttt e e e e e e e e et e et e e e e eaeens 127

RESOUICE LISES .. iiitii ettt e e e e et e e e et e e e eaenas 127

Byte Offset CalCUIAtioNSuiiiiiiiii e e e 131

Superclass-to-Subclass Chaining of ReSOUrce ListScccvvvvviiiiiiiiiiiiiieii e, 131

IS 0o o I o= PP 132

Obtaining AppliCation RESOUICESccuueiiiieii et e e e e e e e e eans 133

RESOUICE CONVEISIONSiiiiiiieee it e e e et e e et e e et e e e et e e e et e e e e et e e e e et e e e e et aeas 134
Predefined ReSOUrCE CONVEITEScuvuiiiiiii e et ee et e e 134
NEeW RESOUICE CONVEITEISieieieeetieetre ettt e e e e e e e e neens 137
IssUiNg ConVErSioN WarningScouueeuuieiiieeii e e e e e e e e e e e et e e e eeanas 140
Registering a New Resource CONVEESccuviviieiiiieeiiieceieeeeeeei e e e 140
Resource Converter INVOCAIONovvviuiniieeiiiiee e e e 144

Reading and Writing Widget Statecccuviiiiiiiiiii e 146
Obtaining WIAQEL Stuciviiiii e e e e e e e e 146
Setting WIAQEL SEAEvvn i e e e e 149

10. Trandation ManaQEMENTceuueiiii e e e e e e e e e e e e e e et e et eeaa e e aaneeeannas 154

ACHON TADIES ..o 154
Action Table REQISLIAtiONciiiieiiii e e e e e 155
Action Names to Procedure TranslationScoevuuieiiiiinieiiiiinieeein e 155
Action HOOK REGISITAIIONuvuiiieiii e e e e e e e e e e e e e e aes 156

Translation TaDIESuiiiii e e 157
EVENE SEOUENCES ... vt e e 157
ACHON SEOUENCES ... vttt et e e e e e e e e e e e e e e e e e et e e e et e e aaneeeens 157
MUIEI-CHCK TIME ..ttt e et e e et e e e ene e eees 158

Trandation Table Managementoiiiiiiii e e 158

USING ACCEIEIBIONS . .uuiiiitieiiii e e et e e e e e e e e e e e e e et e e et e e et e e et e eannaees 160

KeyCode-to-KeySym CONVEISIONScevuuieiiieeiieeiiieeeie e et eeateeeeae e st esanesaneesens 161

Obtaining a KeySym in an Action Procedureccooevvieiiiiiiiii i, 164

KeySym-t0o-KeyCode CONVEISIONSevuueiiieeiieeiiieeee e et e et e e st e st eeanesanneeeens 164

Registering Button and Key Grabs for ACHONSovevviiiiiiiiiiii e 165

INVOKING ACHIONS DITECHYcvviiiiiec e e 166

Obtaining a Widget's ACHION LiStcouiiiiiiiiiiiii e e 166

U 1 3 Y2 W T 1o 168

Determining the Number of Elementsin an Arrayccooevvieiiiiiiiii i 168

Trandating Strings to Widget INStANCEScc.vuiiiinieii i 168

Managing MemMOrY USAQE .. .cuuuiiunieiiiieeii et e e e e e e e e e e e s e e e s e et e e ean e eenaas 169

Sharing GraphiCs CONEXLSu.iiviiiiii e e e e r e e e e 170

ManNagiNGg SElECHIONSuuiiiiieii e e e e e e e e e et e e et e e e eaas 172
Setting and Getting the Selection Timeout Valuec.cceveviiiiiiiniiincceeeeis 172
USINg ATOMIC TraNSFarS . .cuuiiii e e e e e 172
Using Incremental TransferSovveiiiiii e 178
Setting and Retrieving Selection Target Parameterscoooovvvvevvieeiineviieeeieee, 182
Generating MULTIPLE REQUESES .. .c.uuiviiiciii e ee e e e e e e e 184
Auxiliary SElection Properti€Scceuuiiiiiiiiii e e e 185
Retrieving the Most Recent TimeStampccoviiiiiiiiiiiiii e 185
Retrieving the Most RECENt EVENEc.viiiiiiiii e 186

Merging Exposure Events into a REJIONcoovuieiiiiiiii e 186

Vi

X Toolkit Intrinsics —
C Language Interface

Trandating Widget COOrdiNaIESuuiiiiiieiiiieiii e e e e 186
Trandating a Window t0 aWIdQELoiiiiiiiiie e 187
[P2 1010 1T oo = o = 187
Setting WM_COLORMAP_WINDOWSiiiiiiiiieiiiiine e e et e e 191
FiNding FIlE NAIMES .. ccvuiii e e e e eans 191
HOOKS fOr EXTErNal AQENTS ..uuniiei it e e e e e e e e e e e eeeen 194
HOOK OBJECt RESOUICEScivvciiii e e e e e e e aen 195
QUENYING OPEN DiSPlaysS ..ovueiiiieiiii e e e e e e e 199

22 N o g Yo (o1 A @ o=l P 200
DAl SIIUCLUIES ...ttt et e e et e et et e e e e e e e e e enaeens 200
(@ o)1= o O o] = v £ N 200
ObJectClassPart SLUCIUIEcvviieii e e e e eeens 200
ODBJECIPAt SLUCIUIE .. .eevieieieei e e e e e e e e aaaas 201
ODJECt RESOUICES ... ciitiieii e ettt et e e e e e e e e e e e e et e e st eeaaeees 202
ObjectPart Default VaUBSccovuieiiiciii e e 202
Object Arguments to INtriNSICS ROULINESccvuiiiiiciie e e e 202

UL SN 0 @ o] = ox PN 203
ReCtangle ODJECESvuiiii i 203
ReCtOD]ClassPart SITUCIUIEcviiieiiicee e e e e e aans 203
RECLOD]Part SIIUCIUIE .. ive i e e e e e e e e e ees 204
RECLOD] RESOUICESvniii it e e e e e eaes 205
RectObjPart Default ValUESccvuuiiiiiiiiecie e 205
Widget Arguments to INtrinSICS ROULINESccuviiiiiiiiiieii e 205

Use of ReCtangle ObJECEScvviiiii e e e e e e e 206
UNAECIAIEA ClaSS ...uuiiiiiiiiiee ittt e e et e e et e e eaan s 207
Widget Arguments to INtriNnSICS ROULINESccvvuiiiiiciiii e 207
13. Evolution Of the INEIINSICS ...uuuiiiiiii et e e e e eanens 209
Determining Specification ReviSion LEVEcooiiiiiiiiiiii e, 209
Release 3 to Release 4 Compatibilityoovviiiiiiiii e 209
Additional ArQUMENTScevniiii e e e e e e e e e e eaae e 209

set values almost ProCEAUIESccvvuieiii e 209
QUETY GEOIMELTY ..evitietiit ettt et ettt et et e et e n e n et e aneanaas 210
unrealizeCallback Callback Listcc.uuiiiiiiiiiiiiiiiieee e 210
Subclasses of WIMShEILouniii e 210
RESOUICE TYPE CONVEITEI'S . .uiiiiieiie it ans 210
KeySym Case Conversion ProCedUreccuuveiiiciiiieeie e ee e e 210

[N [o g Yo (o 1= A @ o] <o 211
Release 4 to Release 5 Compatibilitycoovviiiiiiiiii e, 211
DasETranslatioNS RESOUICEciiiviieeiiii e 211
Resource File Search Pathcooooiiiiiiii e 211
CUSLOMIZALION RESOUICEeieeiiieeeeii e et e e e e e et e e et e e e an e e eaenns 212
Per-Screen ResoUrce Databasevuvviiiiiiiiiiiie e 212
Internationalization of APPlICAtioNScccvviiiiiiiiiie e, 212
Permanently Allocated SIINGS ... ccvveiiiieiii e 212
Arguments to EXiSting FUNCLIONSoovvniiiiiciii e e ee e 213
Release 5 to Release 6 Compatibilitycoovvniiiiiiiiii e 213
WiAQEL INtEINEIScive i e 213
General Application DeVvEIOPMENLoiviiiiiiie e 213
Communication with Window and Session Managersovevvvevviieeeinieennnennnn 214
GeOMELTY MaNAgEIMENTeuieiie e aae e 214
Event Managemento.iiiiiii e 214
RESOUICE ManagemMENT ... 215
Trandation ManagemeNtccouuieiiieiiiiee e e e e e e e e e e aes 215
SEIECHIONS ..ot 215
External Agent HOOKSiiiiiiiiii e e e e 215
Release 6 to Release 7 Compatibilitycoovviiiiiiiiii e, 215
Changes DUNNG X1IRGccouuiiiiiiiii e e e e e e e e e et e aa e eens 215
Changes DUNNG XLART7 ...uuciiiiiiii et e e e e e e e e et e e e eaas 216

vii

X Toolkit Intrinsics —
C Language Interface

Converting to Standard Coiiiiiiiii i 216
A. RESOUICE FIlE FOMEL .. ieiiii et e e e et e e e era s 221
B. Trandation Table SYNEAXccuuiiiiiiiiiic e e e e e eanees 222
C. Compatibility FUNCHIONSuuiii e e e e ean s 229
D. INtriNSICS ErTOr MESSAES .. .evvuiiitieiiinieeie et e et e et e e e e e e e e e e et e e et e e st e e et e e aaeeeanns 239
I B = 1T 0= S o 247
F. Resource Configuration Managementoovuuiieiiieiiieeiie e e e e e e e e e eanes 257

viii

About This Manual

X Toolkit Intrinsics— C Language Interface isintended to be read by both application programmers
who will use one or more of the many widget sets built with the Intrinsics and by widget programmers
who will use the Intrinsics to build widgets for one of the widget sets. Not all the information in this
manual, however, applies to both audiences. That is, because the application programmer is likely
to use only a number of the Intrinsics functions in writing an application and because the widget
programmer is likely to use many more, if not all, of the Intrinsics functions in building a widget, an
attempt has been made to highlight those areas of information that are deemed to be of special interest
for the application programmer. (It is assumed the widget programmer will have to be familiar with
al theinformation.) Therefore, al entriesin the table of contents that are printed in bold indicate the
information that should be of special interest to an application programmer.

It isalso assumed that, as application programmers become more familiar with the concepts discussed
inthismanual, they will find it more convenient to implement portions of their applications as special-
purpose or custom widgets. It is possible, nonetheless, to use widgets without knowing how to build
them.

Conventions Used in this Manual

This document uses the following conventions:

* Global symbols are printed int hi s speci al font. These can be either function names,
symbolsdefinedinincludefiles, datatypes, or structure names. Argumentsto functions, procedures,
or macros are printed in italics.

» Each function isintroduced by a general discussion that distinguishes it from other functions. The
function declaration itself follows, and each argument is specifically explained. General discussion
of the function, if any is required, follows the arguments.

» Toeliminate any ambiguity between those arguments that you pass and those that a function returns
to you, the explanations for all arguments that you pass start with the word specifies or, in the case
of multiple arguments, the word specify. The explanationsfor all argumentsthat are returned to you
start with the word returns or, in the case of multiple arguments, the word return.

Chapter 1. Intrinsics and Widgets

The Intrinsics are a programming library tailored to the special requirements of user interface
construction within a network window system, specifically the X Window System. The Intrinsics and
awidget set make up an X Toolkit.

Intrinsics

The Intrinsics provide the base mechanism necessary to build awide variety of interoperating widget
sets and application environments. The Intrinsics are alayer on top of Xlib, the C Library X Interface.
They extend the fundamental abstractions provided by the X Window System while still remaining
independent of any particular user interface policy or style.

The Intrinsics use object-oriented programming techniques to supply a consistent architecture for
constructing and composing user interface components, known as widgets. This allows programmers
to extend awidget set in new ways, either by deriving new widgets from existing ones (subclassing)
or by writing entirely new widgets following the established conventions.

When the Intrinsics were first conceived, the root of the object hierarchy was a widget class named
Core. In Release 4 of the Intrinsics, three nonwidget superclasses were added above Core. These
superclasses are described in Chapter 12, Nonwidget Objects. The name of the class now at the root of
the Intrinsics class hierarchy is Object. The remainder of this specification refers uniformly to widgets
and Coreasif they werethe base classfor all Intrinsics operations. The argument descriptionsfor each
Intrinsics procedure and Chapter 12, Nonwidget Objects describe which operations are defined for the
nonwidget superclasses of Core. The reader may determine by context whether a specific reference
to widget actually means “widget” or “object.”

Languages

The Intrinsics are intended to be used for two programming purposes. Programmers writing widgets
will be using most of the facilities provided by the Intrinsics to construct user interface components
from the simple, such as buttons and scrollbars, to the complex, such as control panels and property
sheets. Application programmers will use a much smaller subset of the Intrinsics procedures in
combination with one or more sets of widgets to construct and present complete user interfaces on an
X display. The Intrinsics programming interfaces primarily intended for application use are designed
to be callablefrom most procedural programming languages. Therefore, most arguments are passed by
reference rather than by value. Theinterfaces primarily intended for widget programmers are expected
to be used principally from the C language. In these cases, the usual C programming conventions
apply. In this specification, the term client refers to any module, widget, or application that calls an
Intrinsics procedure.

Applications that use the Intrinsics mechanisms must include the header files <X11/
Intrinsic.h>and<X11/ StringDefs. h>, or their equivalent, and they may aso include
<X11/ Xat ons. h> and <X11/ Shel | . h>. In addition, widget implementations should include
<X11/IntrinsicP. h>instead of <X11/ I ntri nsic. h>.

The applications must aso include the additional header files for each widget class that they are to
use (for example, <X11/ Xaw/ Label . h>or <X11/ Xaw Scr ol | bar . h>) . On aPOSIX-based
system, the Intrinsics object library fileisnamed | i bXt . a and is usually referenced as -1Xt when
linking the application.

Procedures and Macros

All functions defined in this specification except those specified below may be implemented as C
macroswith arguments. C applications may use“#undef” to remove amacro definition and ensure that

Intrinsics and Widgets

the actual function isreferenced. Any such macro will expand to asingle expression that has the same
precedence as afunction call and that evaluates each of its arguments exactly once, fully protected by
parentheses, so that arbitrary expressions may be used as arguments.

The following symbols are macros that do not have function equivaents and that may expand their
arguments in amanner other than that described above: Xt CheckSubcl ass, Xt New, Xt Nunber ,
XtOFfset O, Xt O f set, and Xt Set Ar g.

Widgets

The fundamental abstraction and data type of the X Toolkit is the widget, which is a combination
of an X window and its associated input and display semantics and which is dynamically allocated
and contains state information. Some widgets display information (for example, text or graphics), and
others are merely containers for other widgets (for example, a menu box). Some widgets are output-
only and do not react to pointer or keyboard input, and others change their display in response to input
and can invoke functions that an application has attached to them.

Every widget belongs to exactly one widget class, which is statically alocated and initialized and
which contains the operations allowable on widgets of that class. Logicaly, a widget class is the
procedures and data associated with all widgets belonging to that class. These procedures and data
can be inherited by subclasses. Physically, awidget class is a pointer to a structure. The contents of
this structure are constant for all widgets of the widget class but will vary from class to class. (Here,
“constant” meansthe class structureisinitialized at compiletime and never changed, except for aone-
time class initialization and in-place compilation of resource lists, which takes place when the first
widget of the class or subclass is created.) For further information, see the section called “Creating
Widgets”

The distribution of the declarations and code for a new widget class among a public .h file for
application programmer use, a private .h file for widget programmer use, and the implementation .c
fileisdescribed in the section called “Widget Classing” The predefined widget classes adhereto these
conventions.

A widget instance is composed of two parts:

* A data structure which contains instance-specific values.
* A class structure which contains information that is applicable to al widgets of that class.

Much of the input/output of a widget (for example, fonts, colors, sizes, or border widths) is
customizable by users.

This chapter discusses the base widget classes, Core, Composite, and Constraint, and ends with a
discussion of widget classing.

Core Widgets

The Core widget class contains the definitions of fieldscommon to all widgets. All widgets classesare
subclasses of the Core class, which is defined by the Cor eCl assPart and Cor ePart structures.

CoreClassPart Structure

All widget classes contain the fields defined in the Cor eCl assPart structure.

typedef struct {

W dget Cl ass supercl ass; See Wdget C assing
String class_naneg; See Resource Managenent
Cardi nal wi dget _si ze; See Wdget C assing
XtProc class_initialize; See Wdget C assing

Intrinsics and Widgets

Xt Wdget Gl assProc class_part_initialize; See Wdget C assing

Xt Enum cl ass_i ni t ed; See Wdget d assing

XtInitProc initialize; See Creating Wdgets

Xt ArgsProc initialize hook; See Creating Wdgets

Xt Real i zeProc reali ze; See Realizing Wdgets

Xt Acti onLi st acti ons; See Transl ati on Managenent

Cardi nal num acti ons; See Transl ati on Managenent

Xt Resour ceLi st resources; See Resource Managenent

Cardi nal numresources; See Resour ce Management

XrmCl ass xrm cl ass; Private to resource nanager

Bool ean conpress_noti on; See X Event Filters

Xt Enum conpr ess_exposur e; See X Event Filters

Bool ean conpress_enterl eave; See X Event Filters

Bool ean visible_ interest; See Wdget Exposure and Visibility
Xt W dget Proc destroy; See Destroying Wdgets

Xt W dget Proc resize; See Ceonetry Managenent

Xt ExposePr oc expose; See Wdget Exposure and Visibility

Xt Set Val uesFunc set _val ues; See Reading and Witing Wdget State

Xt ArgsFunc set_val ues_hook; See Reading and Witing Wdget State
Xt Al nost Proc set _val ues_al nost; See Reading and Witing Wdget State
Xt ArgsProc get_val ues_hook; See Reading and Witing Wdget State

Xt Accept FocusProc accept _focus; See Focusing Events on a Child

Xt Ver si onType versi on; See Wdget C assing
Xt Poi nter call back _private; Private to call backs
String tmtable; See Transl ati on Managenent

Xt Geonet ryHandl er query_geonetry; See Geonetry Managenent
Xt StringProc display_accel erator; See Transl ati on Managenent
Xt Poi nt er extension; See Wdget d assing

} Cored assPart;

All widget classeshavethe Core classfields astheir first component. The prototypical W dget Cl ass
and Cor eW dget Cl ass are defined with only this set of fields.

t ypedef struct {

CoreC assPart core_cl ass;
} Wdgetd assRec, *Wdget C ass, Cored assRec, *CoreW dget d ass;
Various routines can cast widget class pointers, as needed, to specific widget class types.

The single occurrences of the class record and pointer for creating instances of Core are

InlntrinsicP.h:

extern W dget O assRec wi dget Cl assRec;
#defi ne coreC assRec wi dget O assRec

Inlntrinsic.h:

extern Wdget d ass wi dget C ass, coreW dget d ass;

The opaguetypesW dget and W dget ass and the opaguevariablewi dget Cl ass aredefined
for generic actions on widgets. In order to make these types opague and ensure that the compiler
does not allow applications to access private data, the Intrinsics use incomplete structure definitions
inlntrinsic.h:

Intrinsics and Widgets

typedef struct _WdgetC assRec *W dget Cl ass, *CoreW dget C ass;

CorePart Structure

All widget instances contain the fields defined in the Cor ePar t structure.

typedef struct _CorePart ({

W dget sel f; Descri bed bel ow

W dget Cl ass wi dget _cl ass; See Wdget C assing

W dget parent; See Creating Wdgets

Bool ean bei ng_destroyed; See Destroying Wdgets

Xt Cal | backLi st destroy_cal | backs; See Destroying Wdgets

Xt Poi nter constraints; See Constrai ned Composite Wdgets
Position x; See Ceonetry Managenent

Position y; See Ceonetry Managenent

Di nensi on wi dt h; See Ceonetry Managenent

Di nensi on hei ght; See Ceonetry Managenent

Di nensi on border _wi dt h; See Ceonetry Managenent

Bool ean managed; See Conposite Wdgets and Their Children
Bool ean sensitive; See Setting and Checking the Sensitivity Stat:

Bool ean ancestor_sensitive; See Setting and Checking the Sensitivity Stat:
Xt Transl ati ons accel erators; See Transl ati on Managenent

Pi xel border_pi xel ; See Realizing Wdgets

Pi xmap bor der _pi xmap; See Realizing Wdgets

W dget Li st popup_list; See Pop-Up Wdgets

Car di nal num _popups; See Pop-Up Wdgets

String nane; See Resour ce Managenent

Screen *screen; See Realizing Wdgets

Col or map col or map; See Realizing Wdgets

W ndow wi ndow; See Realizing Wdgets

Car di nal dept h; See Realizing Wdgets

Pi xel background_pi xel ; See Realizing Wdgets

Pi xmap backgr ound_pi xmap; See Realizing Wdgets

Bool ean vi si bl g; See Wdget Exposure and Visibility

Bool ean mapped_when_managed; See Conposite Wdgets and Their Children
} CorePart;

All widget instances have the Core fields as their first component. The prototypical type W dget is
defined with only this set of fields.

typedef struct {
CorePart core;
} Wdget Rec, *Wdget, CoreRec, *CoreWdget;
Various routines can cast widget pointers, as needed, to specific widget types.
In order to make these types opague and ensure that the compiler does not allow applicationsto access
private data, the Intrinsics use incomplete structure definitionsin | nt ri nsi c. h.

typedef struct _WdgetRec *W dget, *CoreW dget;
Core Resources

The resource names, classes, and representation types specified in the cor eCl assRec resource list
are

Intrinsics and Widgets

Name Class Representation
XtNaccelerators XtCAccelerators XtRAcceleratorTable
XtNbackground XtCBackground XtRPixel
XtNbackgroundPixmap XtCPixmap XtRPixmap
XtNborderColor XtCBorderColor XtRPixel
XtNborderPixmap XtCPixmap XtRPixmap
XtNcolormap XtCColormap XtRColormap
XtNdepth XtCDepth XtRInt
XtNmappedWhenManaged XtCM appedWhenM anaged XtRBoolean
XtNscreen XtCScreen XtRScreen
XtNtranslations XtCTrang ations XtRTranglationTable

Additional resources are defined for al widgets via the objectd assRec and
rect Cbj A assRec resource lists; see the section called “Object Objects’ and the section called
“Rectangle Objects’ for details.

CorePart Default Values

The default values for the Core fields, which arefilled in by the Intrinsics, from the resource lists, and
by the initialize procedures, are

Intrinsics and Widgets

Field Default Value

self Address of the widget structure (may not be changed).

widget class widget _class argument to Xt Cr eat eW dget (may not be changed).
parent parent argument to Xt Cr eat eW dget (may not be changed).

being_destroyed
destroy_callbacks
constraints

X

y

width

height
border_width
managed
sensitive
ancestor_sensitive
accelerators
border_pixel
border_pixmap
popup_list
num_popups
name

screen

colormap
window

depth
background_pixel

background_pixmap

visible

mapped_when_managed

Parent's being_destroyed value.
NULL
NULL

» O O O O

Fal se

True

logical AND of parent's sensitive and ancestor_sensitive values.
NULL

Xt Def aul t For egr ound

Xt Unspeci fi edPi xmap

NULL

0

name argument to Xt Cr eat eW dget (may not be changed).

Parent's screen; top-level widget gets screen from display specifier
(may not be changed).

Parent's colormap value.

NULL

Parent's depth; top-level widget gets root window depth.
Xt Def aul t Backgr ound

Xt Unspeci fi edPi xmap

True

True

Xt Unspeci fi edPi xmap isasymbolic constant guaranteed to be unequal to any valid Pixmap id,
None, and Par ent Rel ati ve.

Composite Widgets

The Composite widget class is a subclass of the Core widget class (see Chapter 3, Composite Widgets
and Their Children). Compositewidgetsareintended to be containersfor other widgets. Theadditional
dataused by composite widgets are defined by the Conposi t e assPart and Conposi t ePar t

structures.

CompositeClassPart Structure

In addition to the Core class fields, widgets of the Composite class have the following class fields.

typedef struct {

Xt Geonet ryHandl er geonetry nanager; See Geonetry Managenent

Intrinsics and Widgets

Xt W dget Proc change_managed; See Conposite Wdgets and Their Children
Xt Wdget Proc insert_child; See Conposite Wdgets and Their Children
Xt Wdget Proc del ete_child; See Conposite Wdgets and Their Children
Xt Poi nt er extension; See Wdget d assing

} Conposited assPart;

The extension record defined for ConpositeC assPart with record type equal to
NULL QUARK isConposi t eCl assExt ensi onRec.

t ypedef struct {

Xt Poi nt er next _extension; See Cl ass Extension Records
XrmQuark record_type; See Cl ass Extension Records
| ong version; See Cl ass Extension Records
Cardi nal record_size; See Cl ass Extension Records
Bool ean accepts_obj ects; See Creating a Wdget Instance

Bool ean al | ows_change_managed_set; See Bundling Changes to the Managed Set
} Conposited assExt ensi onRec, *ConpositeC assExt ensi on;

Composite classes have the Composite class fields immediately following the Core classfields.

typedef struct {
CoreC assPart core_cl ass;
Conposi t ed assPart conposite_cl ass;
} ConpositeCd assRec, *ConpositeW dgetd ass;

The single occurrences of the class record and pointer for creating instances of Composite are

Inl ntrinsicP.h:

extern ConpositeC assRec conposited assRec;

Inlntrinsic.h:

extern Wdget O ass conpositeW dget d ass;

The opague types Conposi t eW dget and Conposi t eW dget Cl ass and the opaque variable
conposi t eW dget Cl ass aredefined for generic operations on widgets whose classis Composite
or a subclass of Composite. The symbolic constant for the Conposit eCl assExt ensi on
versionidentifier isXt Conposi t eExt ensi onVer si on (seethe section called “ Class Extension
Records’). | nt ri nsi c. h usesanincomplete structure definition to ensure that the compiler catches
attempts to access private data.

typedef struct _ConpositeC assRec *ConpositeW dget d ass;

CompositePart Structure

In addition to the Core instance fields, widgets of the Composite class have the following instance
fields defined in the Conposi t ePart structure.

typedef struct {

W dget Li st children; See Conposite Wdgets and Their Children
Cardi nal numchildren; See Conposite Wdgets and Their Children
Cardi nal num sl ots; See Conposite Wdgets and Their Children

XtOrderProc insert_position; See Insertion Oder of Children: The insert_p
} ConpositePart;

Intrinsics and Widgets

Compositewidgets have the Compositeinstance fieldsimmediately following the Coreinstancefields.

t ypedef struct {
CorePart core,;
Conposi tePart conposite;
} ConpositeRec, *ConpositeWdget;

I ntrinsic. h usesanincomplete structure definition to ensure that the compiler catches attempts
to access private data.

typedef struct _ConpositeRec *ConpositeW dget;
Composite Resources

The resource names, classes, and representation types that are specified in the
conposi t ed assRec resourcelist are

Name Class Representation
XtNchildren XtCReadOnly XtRWidgetList
XtNinsertPosition XtClnsertPosition XtRFunction
XtNnumChildren XtCReadOnly XtRCardinal

CompositePart Default Values

The default values for the Composite fields, which are filled in from the Composite resource list and
by the Compositeinitialize procedure, are

Field Default Value

children NULL

num_children 0

num_slots 0

insert_position Internal function to
insert at end

The children, num_children, and insert_position fields are declared as resources; XtNinsertPosition
is a settable resource, XtNchildren and XtNnumChildren may be read by any client but should only
be modified by the composite widget class procedures.

Constraint Widgets

The Constraint widget class is a subclass of the Composite widget class (see the section called
“Constrained Composite Widgets®). Constraint widgets maintain additional state data for each child;
for example, client-defined constraints on the child's geometry. The additional data used by constraint
widgets are defined by the Const r ai nt Cl assPart and Const rai nt Part structures.

ConstraintClassPart Structure

In addition to the Core and Composite class fields, widgets of the Constraint class have the following
classfields.

typedef struct {
Xt Resour celLi st resources; See Resource Managenent

Intrinsics and Widgets

Cardi nal numresources; See Resour ce Management

Cardi nal constraint_size; See Constrai ned Conposite Wdgets
XtInitProc initialize; See Constrai ned Conposite Wdgets
Xt W dget Proc destroy; See Constrai ned Conposite Wdgets
Xt Set Val uesFunc set _val ues; See Setting Wdget State

Xt Poi nt er extension; See Wdget d assing

} ConstraintC assPart;

The extension record defined for Constrai ntCl assPart with record type equal to
NULLQUARK isConstrai nt O assExt ensi onRec.

typedef struct {

Xt Poi nt er next _extension; See C ass Extension Records
XrmQuark record_type; See C ass Extension Records
| ong version; See C ass Extension Records
Cardi nal record_size; See C ass Extension Records

Xt ArgsProc get val ues_hook; See Obtaining Wdget State
} Constrai nt Cl assExt ensi onRec, *Constrai nt d assExt ensi on;

Constraint classes have the Constraint class fields immediately following the Composite class fields.

typedef struct _ConstraintC assRec {
CoreCd assPart core_cl ass;
Conposi ted assPart conposite_cl ass;
Constrai nt Gl assPart constraint_cl ass;

} Constraintd assRec, *ConstraintWdgetd ass;

The single occurrences of the class record and pointer for creating instances of Constraint are

InlntrinsicP. h:

extern Constraint Cl assRec constrai nt Cl assRec;

Inlntrinsic.h:

extern Wdget O ass constrai nt Wdget d ass;

The opague types Constrai nt Wdget and Constrai nt Wdget G ass and the opague
variable constrai nt Wdget O ass are defined for generic operations on widgets
whose class is Constraint or a subclass of Constraint. The symbolic constant for the
Const rai nt G assExt ensi on version identifier is Xt Const r ai nt Ext ensi onVer si on
(see the section called “Class Extension Records’). | ntri nsi c. h uses an incomplete structure
definition to ensure that the compiler catches attempts to access private data.

typedef struct _ConstraintC assRec *Constrai nt Wdget d ass;

ConstraintPart Structure

In addition to the Core and Composite instance fields, widgets of the Constraint class have the
following unused instance fields defined in the Const r ai nt Par t structure

typedef struct {

int enpty;
} ConstraintPart;

Intrinsics and Widgets

Constraint widgets have the Constraint instance fields immediately following the Composite instance
fields.

typedef struct {
CorePart core;
Conposi tePart conposite;
ConstraintPart constraint;

} Constraint Rec, *Constraint Wdget;

I ntrinsic. h usesanincomplete structure definition to ensure that the compiler catches attempts
to access private data.

typedef struct _Constraint Rec *Constrai nt Wdget;

Constraint Resources

Theconstrai nt O assRec core class and constraint_class resources fields are NULL, and the
num_resources fields are zero; no additional resources beyond those declared by the superclasses are
defined for Constraint.

Implementation-Specific Types

To increase the portability of widget and application source code between different system
environments, the Intrinsics define several types whose precise representation is explicitly dependent
upon, and chosen by, each individual implementation of the Intrinsics.

These implementation-defined types are

Boolean A datum that contains a zero or nonzero
value. Unless explicitly stated, clients should not
assume that the nonzero value is equal to the
symbolic value Tr ue.

Cardinal An unsigned integer datum with a minimum
range of [0..2%6-1].

Dimension An unsigned integer datum with a minimum
range of [0..2%6-1].

Position A signed integer datum with a minimum range
of [-2°..215-1].

XtPointer A datum large enough to contain the largest of a
char*, int*, function pointer, structure pointer, or
long value. A pointer to any typeor function, or a
long value may be converted to an Xt Poi nt er
and back again and the result will compare equal
to the original value. In ANSI C environments it
is expected that Xt Poi nt er will be defined as
void*.

XtArgVal A datum large enough to contan an
Xt Poi nter, Cardi nal, D nension, or
Posi ti on value.

XtEnum An integer datum large enough to encode at
least 128 distinct vaues, two of which are
the symbolic values True and Fal se. The

10

Intrinsics and Widgets

symbolic values TRUE and FALSE are aso
defined to be equal to True and Fal se,
respectively.

In addition to these specific types, the precise order of the fields within the structure declarations for
any of the instance part records Cbj ect Part , Rect Gbj Part, Cor ePart, Conposi t ePart,
Shel | Part, Wwvshel | Part, TopLevel Shel | Part, and Appli cati onShell Part is
implementation-defined. These structures may also have additional private fields internal to the
implementation. The Cbj ect Part, Rect Qbj Part, and Cor ePart structures must be defined
so that any member with the same name appears at the same offset in Qbj ect Rec, Rect Obj Rec,
and CoreRec (W dget Rec). No other relations between the offsets of any two fields may
be assumed.

Widget Classing

The widget_class field of a widget points to its widget class structure, which contains information
that is constant across all widgets of that class. As a consequence, widgets usually do not implement
directly callable procedures; rather, they implement procedures, called methods, that are available
through their widget class structure. These methods are invoked by generic procedures that envelop
common actions around the methodsimplemented by the widget class. Such procedures are applicable
to al widgets of that class and also to widgets whose classes are subclasses of that class.

All widget classesareasubclass of Core and can be subclassed further. Subclassing reducesthe amount
of code and declarations necessary to make a new widget classthat issimilar to an existing class. For
example, you do not have to describe every resource your widget uses in an Xt Resour celLi st.
Instead, you describe only the resources your widget has that its superclass does not. Subclasses
usually inherit many of their superclasses procedures (for example, the expose procedure or geometry
handler).

Subclassing, however, can betakentoo far. If you create a subclassthat inherits none of the procedures
of its superclass, you should consider whether you have chosen the most appropriate superclass.

To make good use of subclassing, widget declarations and naming conventions are highly stylized.
A widget consists of threefiles:

» A public .hfile, used by client widgets or applications.
« A private .h file, used by widgets whose classes are subclasses of the widget class.
» A .cfile, which implements the widget.

Widget Naming Conventions

The Intrinsics provide a vehicle by which programmers can create new widgets and organize a
collection of widgetsinto an application. To ensure that applications need not deal with as many styles
of capitalization and spelling as the number of widget classes it uses, the following guidelines should
be followed when writing new widgets:

» Usethe X library naming conventions that are applicable. For example, arecord component name
isall lowercase and uses underscores (_) for compound words (for example, background_pixmap).
Type and procedure names start with uppercase and use capitalization for compound words (for
example, Ar gLi st or Xt Set Val ues).

» A resource name is spelled identicaly to the field name except that compound names use
capitalization rather than underscore. To let the compiler catch spelling errors, each resource name
should have a symbolic identifier prefixed with “XtN”. For example, the background pixmap
field has the corresponding identifier XtNbackgroundPixmap, which is defined as the string
“backgroundPixmap” . Many predefined namesarelistedin<X11/ St ri ngDef s. h>. Beforeyou
invent a new name, you should make sure there is not already a name that you can use.

A resource class string starts with a capital letter and uses capitalization for compound names (for
example,“BorderWidth”). Each resource class string should have a symbolic identifier prefixed

11

Intrinsics and Widgets

with “XtC" (for example, XtCBorderWidth). Many predefined classes are listed in <X11/
StringDefs. h>.

A resource representation string is spelled identically to the type name (for example,
“TrandationTable"). Each representation string should have a symbolic identifier prefixed with
“XtR” (for example, XtRTrandationTable). Many predefined representation types are listed in
<X11/ Stri ngDefs. h>.

New widget classes start with a capital and use uppercase for compound words. Given anew class
name AbcXyz, you should derive several names:

< Additional widget instance structure part name AbcXyzPart.

¢ Complete widget instance structure names AbcXyzRec and _AbcXyzRec.

« Widget instance structure pointer type name AbcXyzWidget.

« Additiona class structure part name AbcXyzClassPart.

e Complete class structure names AbcXyzClassRec and _AbcXyzClassRec.

 Class structure pointer type name AbcXyzWidgetClass.

¢ Class structure variable abcXyzClassRec.

 Class structure pointer variable abcXyzWidgetClass.

Action procedures available to trandation specifications should follow the same naming
conventions as procedures. That is, they start with a capital letter, and compound names use
uppercase (for example, “Highlight” and “NotifyClient”).

The symbolic identifiers XtN..., XtC..., and XtR... may be implemented as macros, as global symbols,
or as amixture of the two. The (implicit) type of the identifier is St r i ng. The pointer value itself
is not significant; clients must not assume that inequality of two identifiers implies inequality of the
resource name, class, or representation string. Clients should also note that although global symbols
permit savings in literal storage in some environments, they also introduce the possibility of multiple
definition conflictswhen applications attempt to use independently devel oped widgets simultaneously.

Widget Subclassing in Public .h Files

The public .h file for awidget classisimported by clients and contains

A reference to the public .h file for the superclass.

Symbolic identifiers for the names and classes of the new resources that this widget adds to its
superclass. Thedefinitions should have asingle space between the definition name and the value and
no trailing space or comment in order to reduce the possibility of compiler warnings from similar
declarations in multiple classes.

Type declarations for any new resource data types defined by the class.

The class record pointer variable used to create widget instances.

The C type that corresponds to widget instances of this class.

Entry points for new class methods.

For example, the following is the public .h file for a possible implementation of aLabel widget:

#i fndef LABEL_H
#define LABEL_H

/* New resources */

#define XtNustify "justify"

#def i ne Xt Nf or egr ound "foreground”
#define Xt N abel "1 abel "

#defi ne Xt Nf ont "font"

#defi ne Xt N nternal Wdth "internal Wdth"
#def i ne Xt Ni nt er nal Hei ght "internal Hei ght™
/* Class record pointer */

extern Wdget d ass | abel Wdget d ass;

12

Intrinsics and Widgets

/*

C Wdget type definition */

typedef struct _Label Rec *Label W dget ;

/*

New cl ass nethod entry points */

extern voi d Label Set Text (Wdget w, String text);
extern String Label Get Text (W dget w);

#endi f LABEL_H

The conditional inclusion of the text allowsthe application to include header filesfor different widgets

wi

thout being concerned that they already may be included as a superclass of another widget.

To accommodate operating systems with file name length restrictions, the name of the public .h file
isthefirst ten characters of the widget class. For example, the public .h file for the Constraint widget
classisConstrai nt . h.

Widget

Subclassing in Private .h Files

The private .h file for a widget is imported by widget classes that are subclasses of the widget and

Col

ntains

A reference to the public .h file for the class.

A reference to the private .h file for the superclass.

Symbolic identifiersfor any new resource representation types defined by the class. The definitions
should have a single space between the definition name and the value and no trailing space or
comment.

A structure part definition for the new fields that the widget instance adds to its superclass's widget
structure.

The complete widget instance structure definition for this widget.

A structure part definition for the new fields that thiswidget class addsto its superclass's constraint
structure if the widget classis a subclass of Constraint.

The complete constraint structure definition if the widget classis a subclass of Constraint.

Type definitions for any new procedure types used by class methods declared in the widget class
part.

A structure part definition for the new fields that this widget class adds to its superclass's widget
class structure.

The complete widget class structure definition for this widget.

The complete widget class extension structure definition for this widget, if any.

The symbolic constant identifying the class extension version, if any.

The name of the global class structure variable containing the generic class structure for this class.
An inherit constant for each new procedure in the widget class part structure.

For example, the following is the private .h file for a possible Label widget:

#i

fndef LABELP_H

#defi ne LABELP_H

#i

/*

ncl ude <X11/ Label . h>

New representation types used by the Label wi dget */

#define XtRJustify "Justify"

/*

New fields for the Label wi dget record */

typedef struct {

/*

Settabl e resources */
Pi xel f or egr ound;
XFont St ruct *font;

13

Intrinsics and Widgets

String | abel ; /* text to display */

XtJustify justify;

Di nension internal _w dth; /* # pixels horizontal border */

Di nensi on internal _height; /* # pixels vertical border */
/* Data derived fromresources */

cC nor mal _GC;

cC gray_GC,

Pi xmap gray_pi xmap;

Position | abel _x;

Posi tion | abel _y;

Di mensi on | abel _wi dth;
Di nensi on | abel _hei ght;

Car di nal | abel | en;
Bool ean di spl ay_sensitive;
} Label Part;
/* Full instance record declaration */

typedef struct _Label Rec {
Cor ePart core;
Label Part | abel;

} Label Rec;

/* Types for Label class nmethods */
typedef void (*Label Set TextProc) (Wdget w, String text);
typedef String (*Label Get Text Proc) (W dget w);

/* New fields for the Label wi dget class record */
typedef struct {

Label Set Text Proc set text;

Label Get Text Proc get _text;

Xt Poi nter extension;
} Label O assPart;

/* Full class record declaration */
typedef struct _Label d assRec {
CoreC assPart core_cl ass;
Label d assPart | abel cl ass;
} Label d assRec;

/* Class record variable */
extern Label Cl assRec | abel C assRec;

#def i ne Label I nherit Set Text ((Label Set Text Proc) _XtInherit)
#def i ne Label I nherit Get Text ((Label Get Text Proc) _XtInherit)

#endi f LABELP_H

To accommodate operating systems with file name length restrictions, the name of the private .h file
isthefirst nine characters of the widget class followed by a capital P. For example, the private .h file
for the Constraint widget classis Const r ai nP. h.

Widget Subclassing in .c Files

The .c file for awidget contains the structure initializer for the class record variable, which contains
the following parts:

e Class information (for example, superclass, class name, widget size, class initialize, and
class inited).

14

Intrinsics and Widgets

e Data constants (for example, resources and num resources, actions and num actions,
visible interest, compress motion, compress _exposure, and version).

» Widget operations (for example, initialize, realize, destroy, resize, expose, set_values, accept_focus,
and any new operations specific to the widget).

The superclass field points to the superclass global class record, declared in the superclass private .h
file. For direct subclasses of the generic core widget, superclass should be initialized to the address
of the wi dget Cl assRec structure. The superclass is used for class chaining operations and for
inheriting or enveloping a superclasss operations (see the section called “ Superclass Chaining”,
the section called “Initializing a Widget Class’, and the section called “Inheritance of Superclass
Operations’.

The class_name field contains the text name for this class, which is used by the resource manager.
For example, the Label widget has the string “Label”. More than one widget class can share the same
text class name. This string must be permanently allocated prior to or during the execution of the class
initialization procedure and must not be subsequently deallocated.

The widget_size field is the size of the corresponding widget instance structure (not the size of the
class structure).

The version field indicates the toolkit implementation version number and is used for runtime
consistency checking of the X Toolkit and widgets in an application. Widget writers must set it to
the implementation-defined symbolic value Xt Ver si on in the widget class structure initialization.
Thosewidget writerswho believe that their widget binaries are compatiblewith other implementations
of the Intrinsics can put the special value Xt Ver si onDont Check in the version field to disable
version checking for those widgets. If a widget needs to compile alternative code for different
revisionsof theIntrinsicsinterface definition, it may usethe symbol Xt Speci fi cati onRel ease,
as described in Chapter 13, Evolution of the Intrinsics. Use of Xt Ver si on allows the Intrinsics
implementation to recognize widget binaries that were compiled with older implementations.

The extension field is for future upward compatibility. If the widget programmer adds fields to class
parts, all subclass structurelayouts change, requiring completerecompilation. To allow clientsto avoid
recompilation, an extension field at the end of each class part can point to arecord that contains any
additional class information required.

All other fields are described in their respective sections.

The .c file also contains the declaration of the global class structure pointer variable used to create
instances of the class. The following is an abbreviated version of the .c file for a Label widget. The
resources tableis described in Chapter 9, Resour ce Management.

/* Resources specific to Label */
static XtResource resources[] = {
{ Xt Nf or egr ound, Xt CFor eground, XtRPixel, sizeof (Pixel),
Xt Of fset (Label Wdget, |abel.foreground), XtRString,
Xt Def aul t For egr ound},
{Xt Nfont, XtCFont, XtRFontStruct, sizeof(XFontStruct *),
Xt Of fset (Label Wdget, label.font), XtRString,
Xt Def aul t Font },
{Xt Nl abel , XtCLabel, XtRString, sizeof(String),
Xt Of fset (Label Wdget, |abel.label), XtRString, NULL},

}

/* Forward decl arations of procedures */
static void Classlnitialize(void);

15

Intrinsics and Widgets

static void Initialize(Wdget, Wdget, ArgList, Cardinal*);
static void Realize(Wdget, XtValueMask*, XSetW ndowAttributes*);
static void Set Text(Wdget, String);

static void Get Text (W dget);

/* Class record constant */
Label Cl assRec | abel O assRec = {

{
/* core_class fields */
/* supercl ass */ (W dget d ass) &cor eCl assRec,
/* class_nane */ "Label ",
/* wi dget_size */ si zeof (Label Rec),
/* class_initialize */ Classlnitialize,
/* class_part_initialize */ NULL,
/* class_inited */ Fal se,
[* initialize */ Initialize,
/* initialize_hook */ NULL,
/* realize */ Real i ze,
/* actions */ NULL,
/* num_ actions */ o,
/* resources */ resour ces,
/* num_resources */ Xt Nunber (resour ces),
/* xrmcl ass */ NULLQUARK,
/* conpress_notion */ True,
/* conpress_exposure */ True,
/* conpress_enterl eave */ True,
/* visible_interest */ Fal se,
/* destroy */ NULL,
/* resize */ Resi ze,
/* expose */ Redi spl ay,
/* set _val ues */ Set Val ues,
/* set _val ues_hook */ NULL,
/* set _val ues_al nost */ Xt I nherit Set Val uesAl nost ,
/* get_val ues_hook */ NULL,
/* accept _focus */ NULL,
/* version */ Xt Ver si on,
/* call back_of fsets */ NULL,
/* tmtable */ NULL,
/* query_geonetry */ Xt nheritQueryGeonetry,
/* di splay_accel erat or */ NULL,
/* extension */ NULL
}
{
/* Label _class fields */
/* get _text */ CGet Text
/* set _text */ Set Text ,
/* extension */ NULL
}

b

/* Class record pointer */
W dget Cl ass | abel Wdget C ass = (Wdget d ass) & abel d assRec;

/* New net hod access routines */

16

Intrinsics and Widgets

voi d Label Set Text (Wdget w, String text)

{
Label Wdget O ass |we = (Label WdgetC ass) Xt Cl ass(w);
Xt CheckSubcl ass(w, | abel Wdget C ass, NULL);
*(lwe->| abel _cl ass. set _text)(w, text)

}

/* Private procedures */

Widget Class and Superclass Look Up

To obtain the class of awidget, use Xt Cl ass.

W dget Cl ass Xtd ass(w);

w Specifiesthewidget. Must be of class Object or any subclass thereof.
The Xt O ass function returns a pointer to the widget's class structure.

To obtain the superclass of awidget, use Xt Super cl ass.

W dget Cl ass Xt Super Cl ass(W) ;

w Specifiesthewidget. Must be of class Object or any subclass thereof.

The Xt Super cl ass function returns a pointer to the widget's superclass class structure.

Widget Subclass Verification

To check the subclass to which awidget belongs, use Xt | sSubcl ass.
Bool ean XtlsSubclass(w, w dget class);

w Specifies the widget or object instance
whose class isto be checked. Must be of
class Object or any subclass thereof.

widget_class Specifies the widget class for which to
test. Must be objectClass or any subclass
thereof.

The Xt | sSubcl ass function returns Tr ue if the class of the specified widget is equal to or isa
subclass of the specified class. The widget's class can be any number of subclasses down the chain
and need not be an immediate subclass of the specified class. Composite widgets that need to restrict
the class of the items they contain can use Xt | sSubcl ass to find out if a widget belongs to the
desired class of objects.

To test if a given widget belongs to a subclass of an Intrinsics-defined
class, the Intrinsics define macros or functions equivalent to XtlsSubcl ass for
each of the built-in classes. These procedures are XtlsCbject, XtlsRectbj,
Xt sWdget, Xt1sConposite, XtlsConstraint, XtlsShell, XtlsOverrideShell,
Xt sWvshel I, XtlsVendor Shel |, XtlsTransi entShell, XtlsTopLevel Shell,
Xt1sApplicationShell,andXt|sSessi onShel | .

All these macros and functions have the same argument description.

Bool ean Xt S<c ass>(W) ;

17

Intrinsics and Widgets

w Specifies the widget or object instance whose classis to be checked.
Must be of class Object or any subclass thereof.

These procedures may be faster than calling Xt | sSubcl ass directly for the built-in classes.

To check a widget's class and to generate a debugging error message, use Xt CheckSubcl ass,
definedin<X11/ I ntrinsi cP. h>:

voi d Xt CheckSubcl ass(w, wi dget_class, nessage);

w Specifies the widget or object whose
class is to be checked. Must be of class
Object or any subclass thereof.

widget_class Specifies the widget class for which to
test. Must be objectClass or any subclass
thereof.

message Specifies the message to be used.

The Xt CheckSubcl ass macro determines if the class of the specified widget is equal to or is a
subclass of the specified class. The widget's class can be any number of subclasses down the chain
and need not be an immediate subclass of the specified class. If the specified widget's classis not a
subclass, Xt CheckSubcl ass constructs an error message from the supplied message, the widget's
actual class, and the expected class and calls Xt Er r or Msg. Xt CheckSubcl ass should be used
at the entry point of exported routines to ensure that the client has passed in a valid widget class for
the exported operation.

Xt CheckSubcl ass isonly executed when the modul e has been compiled with the compiler symbol
DEBUG defined; otherwise, it is defined as the empty string and generates no code.

Superclass Chaining

While most fields in a widget class structure are self-contained, some fields are linked to their
corresponding fields in their superclass structures. With alinked field, the Intrinsics access the field's
value only after accessing its corresponding superclass value (called downward superclass chaining)
or before accessing its corresponding superclass value (called upward superclass chaining). The self-
contained fields are

In all w dget classes: cl ass_nane
class initialize
wi dget _si ze
realize
vi si bl e_interest
resize
expose
accept _focus
conpress_notion
conpr ess_exposure
conpress_enterl eave
set _val ues_al nost
tmtable
version
al |l ocate
deal | ocat e

In Conposite widget classes: geonet ry_nmanager
change_nanaged
insert _child

18

Intrinsics and Widgets

delete_child
accepts_objects
al | ows_change_nmanaged_set

In Constraint w dget classes: constrai nt _si ze

In Shell w dget classes: root _geonetry_manager

With downward superclass chaining, the invocation of an operation first accesses the field from the
Object, RectObj, and Core class structures, then from the subclass structure, and so on down the class
chain to that widget's class structure. These superclass-to-subclass fields are

class_part _initialize
get _val ues_hook
initialize
initialize_hook

set _val ues

set _val ues_hook
resour ces

In addition, for subclasses of Constraint, the following fields of the Const r ai nt Cl assPart and
Const rai nt O assExt ensi onRec structures are chained from the Constraint class down to the
subclass:

resour ces
initialize
set _val ues
get val ues_hook

With upward superclass chaining, theinvocation of an operation first accessesthefield fromthewidget
class structure, then from the superclass structure, and so on up the class chain to the Core, RectObj,
and Object class structures. The subclass-to-superclass fields are

dest roy
acti ons

For subclasses of Constraint, the following field of Const r ai nt O assPart ischained from the
subclass up to the Constraint class:

destroy

Class Initialization: class_initialize and
class_part_initialize Procedures

Many class records can be initialized completely at compile or link time. In some cases, however, a
class may need to register type converters or perform other sorts of once-only runtime initialization.

Because the C language does not have initialization procedures that are invoked automatically when
aprogram starts up, awidget class can declare a class_initialize procedure that will be automatically
called exactly once by the Intrinsics. A classinitialization procedure pointer is of type Xt Pr oc:

typedef void (* XtProc)(void);

A widget class indicates that it has no class initialization procedure by specifying NULL in the
class initialize field.

19

Intrinsics and Widgets

In addition to the class initialization that is done exactly once, some classes perform initialization
for fields in their parts of the class record. These are performed not just for the particular class, but
for subclasses as well, and are done in the class's class part initialization procedure, a pointer to
whichisstored intheclass part_initializefield. Theclass part_initialize procedure pointer is of type
Xt W dget Cl assProc.

typedef void (*XtWdget d assProc) (W dget C ass)(w dget _cl ass);

widget_class Points to the class structure for the class
being initialized.

During classinitialization, the class part initialization procedures for the class and all its superclasses
are called in superclass-to-subclass order on the class record. These procedures have the responsibility
of doing any dynamic initializations necessary to their class's part of the record. The most common
is the resolution of any inherited methods defined in the class. For example, if a widget class
C has superclasses Core, Composite, A, and B, the class record for C first is passed to Core 's
class part_initialize procedure. This resolves any inherited Core methods and compiles the textual
representations of the resource list and action table that are defined in the class record. Next,
Composite'sclass part_initialize procedureiscalled toinitialize the composite part of C'sclassrecord.
Finally, the class part_initialize procedures for A, B, and C, in that order, are called. For further
information, see the section called “Initializing a Widget Class’ Classes that do not define any new
class fields or that need no extra processing for them can specify NULL in the class part_initialize
field.

All widget classes, whether they have a class initialization procedure or not, must start with their
class inited field Fal se.

Thefirst time awidget of aclassis created, Xt Cr eat eW dget ensuresthat the widget classand all
superclasses are initialized, in superclass-to-subclass order, by checking each class inited field and,
if itisFal se, by calling the class initialize and the class part_initialize procedures for the class and
all its superclasses. The Intrinsics then set the class inited field to anonzero value. After the one-time
initialization, a class structure is constant.

The following example provides the classinitialization procedure for a Labdl class.

static void Classlnitialize(void)

{
Xt Set TypeConverter (Xt RString, XtRJustify, CvtStringToJustify,

NULL, O, XtCacheNone, NULL);
}

Initializing a Widget Class

A classisinitialized when thefirst widget of that class or any subclassiscreated. Toinitialize awidget
class without creating any widgets, use Xt I ni ti al i zeW dget C ass.

void XtlnitializeWdgetd ass(object_cl ass);

object_class Specifies the object class to initialize.
May beobj ect Cl ass or any subclass
thereof.

If the specified widget class is adready initialized, Xt nitiali zeW dget Cl ass returns
immediately.

If the class initialization procedure registers type converters, these type converters are not available
until the first object of the class or subclassiscreated or Xt I ni ti al i zeW dget Cl ass iscalled
(see the section called “Resource Conversions’).

20

Intrinsics and Widgets

Inheritance of Superclass Operations

A widget classisfreeto use any of its superclass's self-contained operations rather than implementing
its own code. The most frequently inherited operations are

* expose
* redlize

* insert_child
 delete child

* geometry_manager
» set values amost

To inherit an operation xyz, specify the constant Xt | nher i t Xyzin your class record.

Every class that declares a new procedure in its widget class part must provide for inheriting
the procedure in its class part_initialize procedure. The chained operations declared in Core and
Constraint records are never inherited. Widget classes that do nothing beyond what their superclass
does specify NULL for chained procedures in their class records.

Inheriting works by comparing the value of the field with aknown, special value and by copyinginthe
superclass's value for that field if a match occurs. This special value, called the inheritance constant,
isusualy the Intrinsicsinternal value Xt | nheri t cast to the appropriatetype. Xt I nherit isa
procedure that issues an error message if it isactually called.

For example, Conposi t eP. h contains these definitions:

#define XtlnheritGeonetryManager ((XtGeonetryHandler) _Xtlnherit)

#defi ne XtlnheritChangeManaged ((Xt W dget Proc) _Xtlnherit)
#define XtlnheritlnsertChild ((Xt ArgsProc) _Xtlnherit)
#define XtlnheritDel eteChild ((Xt W dget Proc) _Xtlnherit)

Composite's class_part_initialize procedure begins as follows:

static void ConpositeC assPartlnitialize(WdgetCd ass wi dget C ass)

{
Conposi teWdget G ass wc = (Conposi t eW dget Cl ass) wi dget Ol ass;
Conposi t eW dget C ass super = (ComnpositeW dget C ass)we->core_cl ass. supercl a
i f (wc->conposite_class.geonetry _manager == Xtlnherit GeonetryManager) {
wWc- >conposi te_cl ass. geonmetry_nanager = super->conposite_cl ass. geonetry.
}

i f (wc->conposite_class.change _nanaged == Xt nherit ChangeManaged) {
we- >conposi t e_cl ass. change_managed = super->conposite_cl ass. change_man.

}

}

Nonprocedure fields may be inherited in the same manner as procedure fields. The class may declare
any reserved value it wishes for the inheritance constant for its new fields. The following inheritance
constants are defined:

For Object:

e XtlnheritAllocate
e XtlnheritDeal | ocate

For Core:

21

Intrinsics and Widgets

e XtlnheritRealize

e XtlnheritResize

e XtlnheritExpose

e Xtlnherit Set Val uesAl nost

e XtlnheritAccept Focus

e XtlnheritQeryGeonetry

e XtlnheritTransl ations

e XtlnheritDisplayAccel erator

For Composite:

e Xtlnherit GeonetryManager
e Xt I nherit ChangeManaged

e XtlnheritlnsertChild

e XtlnheritDel eteChild

For Shell:

e Xt I nheritRoot Geonet r yManager

Invocation of Superclass Operations

A widget sometimes needs to call a superclass operation that is not chained. For example, awidget's
expose procedure might call its superclass's expose and then perform a little more work on its own.
For example, a Composite class with predefined managed children can implement insert_child by
first calling its superclass's insert_child and then calling Xt ManageChi | d to add the child to the
managed set.

Note

A class method should not use Xt Super cl ass but should instead call the class method
of its own specific superclass directly through the superclass record. That is, it should use
its own class pointers only, not the widget's class pointers, as the widget's class may be a
subclass of the class whose implementation is being referenced.

Thistechnique is referred to as envel oping the superclass's operation.

Class Extension Records

It may be necessary at times to add new fields to already existing widget class structures. To permit
this to be done without requiring recompilation of all subclasses, the last field in aclass part structure
should be an extension pointer. If no extension fields for a class have yet been defined, subclasses
should initialize the value of the extension pointer to NULL.

If extension fields exigt, as is the case with the Composite, Constraint, and Shell classes, subclasses
can provide valuesfor thesefields by setting the extension pointer for the appropriate part in their class
structure to point to a statically declared extension record containing the additional fields. Setting the
extension field is never mandatory; code that uses fields in the extension record must always check
the extension field and take some appropriate default action if it isSNULL.

In order to permit multiple subclasses and libraries to chain extension records from a single extension
field, extension records should be declared as alinked list, and each extension record definition should
contain the following four fields at the beginning of the structure declaration:

struct {
Xt Poi nt er next _extension;
XrmQuark record_type;
| ong version;

22

Intrinsics and Widgets

Cardinal record_size;

b

next_extension Specifies the next record in the list, or
NULL.

record_type Specifies the particular structure
declaration to which each extension
record instance conforms.

version Specifies a version id symbolic constant
supplied by the definer of the structure.

record size Specifies the total number of bytes

allocated for the extension record.

The record_type field identifies the contents of the extension record and is used by the definer of the
record to locateits particular extension recordinthelist. Therecord_typefieldisnormally assigned the
result of Xr n5t r i ngToQuar k for aregistered string constant. The Intrinsics reserve all record type
strings beginning with the two characters “XT” for future standard uses. The value NULL QUARK
may also be used by the class part owner in extension records attached to its own class part extension
field to identify the extension record unique to that particular class.

Theversion field is an owner-defined constant that may be used to identify binary filesthat have been
compiled with alternate definitions of the remainder of the extension record data structure. The private
header file for a widget class should provide a symbolic constant for subclasses to use to initiaize
this field. The record_size field value includes the four common header fields and should normally
beinitialized with si zeof ().

Any vaue stored in the class pat extension fields of Conposited assPart,
Constrai nt Cl assPart, or Shel | Cl assPart must point to an extension record conforming
to this definition.

TheIntrinsics provide a utility function for widget writersto locate a particular class extension record
inalinked list, given awidget class and the offset of the extension field in the class record.

To locate a class extension record, use Xt Get Cl assExt ensi on.

Xt Poi nter Xt Getd assExt ension(object_cl ass, byt e_of f set, type,
version, record_size);

object_class Specifies the object class containing the
extension list to be searched.

byte offset Specifiesthe offset in bytesfrom the base
of the class record of the extension field
to be searched.

type Specifies the record_type of the class
extension to be located.

version Specifies the minimum acceptable
version of the classextension required for
amatch.

record size Specifies the minimum acceptable length
of the class extension record required for
amatch, or 0.

Thelist of extension records at the specified offset in the specified object class will be searched for a
match on the specified type, aversion greater than or equal to the specified version, and arecord size

23

Intrinsics and Widgets

greater than or equal the specified record sizeif it isnonzero. Xt Get Cl assExt ensi on returns a
pointer to a matching extension record or NULL if no match is found. The returned extension record
must not be modified or freed by the caller if the caller is not the extension owner.

24

Chapter 2. Widget Instantiation

A hierarchy of widget instances constitutes a widget tree. The shell widget returned by
Xt AppCr eat eShel | istheroot of the widget treeinstance. The widgets with one or more children
are the intermediate nodes of that tree, and the widgets with no children of any kind are the leaves of
the widget tree. With the exception of pop-up children (see Chapter 5, Pop-Up Widgets), this widget
tree instance defines the associated X Window tree.

Widgets can be either composite or primitive. Both kinds of widgets can contain children, but
the Intrinsics provide a set of management mechanisms for constructing and interfacing between
composite widgets, their children, and other clients.

Composite widgets, that is, members of the class conposi t eW dget Cl ass, are containers for
an arbitrary, but widget implementation-defined, collection of children, which may be instantiated
by the composite widget itself, by other clients, or by a combination of the two. Composite widgets
also contain methods for managing the geometry (layout) of any child widget. Under unusual
circumstances, a composite widget may have zero children, but it usually has at least one. By
contrast, primitivewidgetsthat contain children typically instantiate specific children of known classes
themselves and do not expect external clients to do so. Primitive widgets also do not have general
geometry management methods.

In addition, the Intrinsics recursively perform many operations (for example, redization and
destruction) on composite widgets and all their children. Primitive widgets that have children must be
prepared to perform the recursive operations themselves on behalf of their children.

A widget tree is manipulated by several Intrinsics functions. For example, Xt Real i zeW dget
traverses the tree downward and recursively realizes all pop-up widgets and children of composite
widgets. Xt Dest r oyW dget traverses the tree downward and destroys all pop-up widgets and
children of composite widgets. The functions that fetch and modify resources traverse the tree upward
and determine the inheritance of resources from awidget's ancestors. Xt MakeCGeonet r yRequest
traverses the tree up one level and calls the geometry manager that is responsible for awidget child's
geometry.

To facilitate upward traversal of the widget tree, each widget has a pointer to its parent widget. The
Shell widget that Xt AppCr eat eShel | returns has a parent pointer of NULL.

To facilitate downward traversal of the widget tree, the children field of each composite widget isa
pointer to an array of child widgets, which includes al normal children created, not just the subset
of children that are managed by the composite widget's geometry manager. Primitive widgets that
instantiate children are entirely responsible for all operations that require downward traversal below
themselves. In addition, every widget has a pointer to an array of pop-up children.

Initializing the X Toolkit

Before an application can call any Intrinsics function other than Xt Set LanguagePr oc and
Xt Tool ki t Threadl ni ti al i ze, it must initialize the Intrinsics by using

e Xt Tool kitlnitialize,whichinitializesthe Intrinsicsinternals

e Xt Creat eAppl i cati onCont ext , which initializes the per-application state

e« XtDisplaylnitializeorXtQpenbDi spl ay, whichinitializesthe per-display state
* Xt AppCr eat eShel | , which creates the root of awidget tree

Or an application can call the convenience procedure Xt QpenAppl i cati on, which combines
the functions of the preceding procedures. An application wishing to use the ANSI C locae
mechanism should call Xt Set LanguageProc prior to calling Xt Di spl aylnitialize,
Xt OpenDi spl ay, Xt OpenAppl i cation,or Xt Applnitialize.

25

Widget Instantiation

Multiple instances of X Toolkit applications may be implemented in a single address space. Each
instance needsto be ableto read input and dispatch eventsindependently of any other instance. Further,
an application instance may need multiple display connections to have widgets on multiple displays.
From the application's point of view, multiple display connections usually are treated together as a
singleunit for purposes of event dispatching. To accommodate both requirements, the Intrinsics define
application contexts, each of which provides the information needed to distinguish one application
instance from another. The major component of an application context is a list of one or more X
Di spl ay pointers for that application. The Intrinsics handle all display connections within asingle
application context simultaneously, handling input in a round-robin fashion. The application context
type Xt AppCont ext isopaqueto clients.

Toinitialize the Intrinsicsinternals, use Xt Tool kitlniti al i ze.
void XtToolkitlnitialize(void);

If XtToolkitlnitialize was previousy cdled, it returns immediately. When
Xt Tool kit Threadl nitialize is called before Xt Tool kitlnitialize, the latter is
protected against simultaneous activation by multiple threads.

To create an application context, use Xt Cr eat eAppl i cat i onCont ext .
Xt AppCont ext Xt Cr eat eAppl i cati onCont ext (voi d);

The Xt Cr eat eAppl i cati onCont ext function returns an application context, which is an
opague type. Every application must have at |east one application context.

To destroy an application context and close any remaining display connections in it, use
Xt Dest r oyAppl i cati onCont ext .

voi d Xt DestroyApplicati onCont ext (app_cont ext);
app_context Specifies the application context.

The Xt Dest r oyAppl i cati onCont ext function destroys the specified application context.
If called from within an event dispatch (for example, in a calback procedure),
Xt Dest r oyAppl i cati onCont ext does not destroy the application context until the dispatch is
complete.

To get the application context in which a given widget was created, use
Xt W dget ToAppl i cati onCont ext .

Xt AppCont ext Xt W dget ToAppl i cat i onCont ext (W) ;

w Specifiesthewidget for which you want the application context. Must
be of class Object or any subclass thereof.

The Xt W dget ToAppl i cati onCont ext function returns the application context for the
specified widget.

Toinitialize adisplay and add it to an application context, use Xt Di spl ayl nitialize.

void XtDisplaylnitialize(app_context, display, application_nane,
application_class, options, numoptions, argc, argv);

app_context Specifies the application context.

display Specifies a previously opened display
connection. Note that a single display
connection can be in a most one
application context.

application_name Specifies the name of the application
instance.

26

Widget Instantiation

application_class Specifies the class name of this
application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line
for any application-specific resources.
The options argument is passed as
a parameter to Xr mPar seComand.
For further information, see Parsing
Command Line Options in Xlib — C
Language X Interface and the section
called “Parsing the Command Line" of
this specification.

num_options Specifies the number of entries in the
options list.
argc Specifies a pointer to the number of

command line parameters.

argv Specifies the list of command line
parameters.

The Xt Di spl ayl nitial i ze function retrieves the language string to be used for the specified
display (see the section called “Finding File Names’), calls the language procedure (if set)
with that language string, builds the resource database for the default screen, calls the Xlib
Xr mPar seCommand function to parse the command line, and performs other per-display
initialization. After Xr mPar seComand has been called, argc and argv contain only those
parametersthat were not in the standard option table or in the table specified by the options argument.
If the modified argc is not zero, most applications simply print out the modified argv along with a
message listing the allowable options. On POSIX-based systems, the application name is usually the
final component of argv[Q]. If the synchronous resourceis Tr ue, Xt Di spl ayl niti al i ze calls
the Xlib XSynchr oni ze function to put Xlib into synchronous mode for this display connection
and any others currently open in the application context. See the section called “ Loading the Resource
Database” and the section called “Parsing the Command Line” for details on the application_name,
application_class, options, and num_options arguments.

XtDisplaylnitialize cals XrnSet Dat abase to associate the resource database of the
default screen with the display before returning.

To open adisplay, initidizeit, and then add it to an application context, use Xt QpenDi spl ay.
Di spl ay * Xt OpenDi spl ay(app_cont ext, di splay_string,

application_nanme, application_class, options, numoptions, argc,
argv);

app_context Specifies the application context.
display_string Specifiesthe display string, or NULL.
application_name Specifies the name of the application

instance, or NULL.

application_class Specifies the class name of this
application, which is usually the generic
name for all instances of this application.

options Specifies how to parse the command line
for any application-specific resources.
The options argument is passed as a
parameter to Xr nPar seConmmrand.

27

Widget Instantiation

num_options Specifies the number of entries in the
options list.
argc Specifies a pointer to the number of

command line parameters.

argv Specifies the list of command line
parameters.

The Xt OpenDi spl ay function cals XOpenDi spl ay with the specified display_string. If
display_stringisNULL, Xt OpenDi spl ay usesthe current value of the -display option specified in
argv. If no display is specified in argv, the user's default display is retrieved from the environment.
On POSI X -based systems, thisisthe value of the DISPLAY environment variable.

If this succeeds, Xt QpenDi spl ay then cals Xt Di spl aylnitialize and passes it the
opened display and the value of the -name option specified in argv as the application name. If
no -name option is specified and application_name is non-NULL, application_name is passed
to Xt Di splaylnitialize. If application name is NULL and if the environment variable
RESOURCE_NAME is set, the value of RESOURCE_NAME is used. Otherwise, the application
name is the name used to invoke the program. On implementations that conform to ANSI C Hosted
Environment support, the application namewill beargv][0] lessany directory and filetype components,
that is, the final component of argv[0], if specified. If argv[0] does not exist or isthe empty string, the
application nameis“main”. Xt OQpenDi spl ay returnsthe newly opened display or NULL if it failed.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information
regarding the use of Xt OpenDi spl ay in multiple threads.

To close adisplay and remove it from an application context, use Xt Cl oseDi spl ay.
voi d Xt d oseDi spl ay(di spl ay);
display Specifies the display.

The Xt C oseDi spl ay function cals XCl oseDi spl ay with the specified display as soon as
it is safe to do so. If called from within an event dispatch (for example, a callback procedure),
Xt Cl oseDi spl ay does not close the display until the dispatch is complete. Note that applications
need only call Xt Cl oseDi spl ay if they are to continue executing after closing the display;
otherwise, they should call Xt Dest r oyAppl i cati onCont ext .

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information
regarding the use of Xt Cl oseDi spl ay in multiple threads.

Establishing the Locale

Resource databases are specified to be created in the current process locale. During display
initialization prior to creating the per-screen resource database, the Intrinsicswill call out to aspecified
application procedure to set the locale according to options found on the command line or in the per-
display resource specifications.

The callout procedure provided by the application is of type Xt LanguagePr oc.
typedef String (*XtLanguageProc) (di splay, |anguage, client_data);
display Passes the display.

language Passes the initial language value obtained
from the command line or server per-
display resource specifications.

client_data Passes the additional client data specifiedin
the call to Xt Set LanguagePr oc.

28

Widget Instantiation

The language procedure allows an application to set the locale to the value of the language resource
determined by Xt Di spl ayl ni ti al i ze. The function returns a new language string that will be
subsequently used by Xt Di spl ayl ni ti al i ze to establish the path for loading resourcefiles. The
returned string will be copied by the Intrinsics into new memory.

Initially, no language procedure is set by the Intrinsics. To set the language procedure for use by
XtDisplaylnitialize,useXtSetlLanguagePr oc.

Xt LanguagePr oc Xt Set LanguagePr oc(app_context, proc, client_data);

app_context Specifies the application context in which
the language procedure is to be used, or
NULL.

proc Specifies the language procedure.

client_data Specifies additional client data to be passed

to the language procedure when it is called.

Xt Set LanguageProc sets the language procedure that will be caled from
XtDisplaylnitialize for all subsequent Displays initialized in the specified application
context. If app_context is NULL, the specified language procedure is registered in all application
contexts created by the calling process, including any future application contexts that may be
created. If proc is NULL, a default language procedure is registered. Xt Set LanguagePr oc
returns the previously registered language procedure. If a language procedure has not yet been
registered, the return value is unspecified, but if this return value is used in a subsequent call to
Xt Set LanguagePr oc, it will cause the default language procedure to be registered.

The default language procedure does the following:

* Sets the locale according to the environment. On ANSI C-based systems this is done by calling
set| ocal e(LC_ALL, language). If an error is encountered, a warning message is issued with
Xt Vr ni ng.

e Cals XSupportsLocal e to verify that the current locale is supported. If the locale is not
supported, awarning message is issued with Xt War ni ng and thelocaleissetto “C".

» CdlsXSet Local eModi fi er s specifying the empty string.

* Returns the value of the current locale. On ANSI C-based systems this is the return value from a
final call toset | ocal e(LC_ALL, NULL).

A client wishing to use this mechanism to establish locale can do so by caling
Xt Set LanguagePr oc prior to Xt Di spl ayl ni ti al i ze, asinthefollowing example.

W dget top;
Xt Set LanguagePr oc(NULL, NULL, NULL);
top = Xt OpenApplication(...);

Loading the Resource Database

The Xt Di spl ayl nitialize function first determines the language string to be used for the
specified display. It then creates aresource database for the default screen of the display by combining
the following sources in order, with the entries in the first named source having highest precedence:

» Application command line (argc, argv).

* Per-host user environment resource file on the local host.

* Per-screen resource specifications from the server.

* Per-display resource specifications from the server or from the user preference file on thelocal host.
 Application-specific user resource file on the local host.

29

Widget Instantiation

 Application-specific class resource file on the local host.

When the resource database for a particular screen on the display is needed (either internally, or when
Xt Scr eenDat abase iscalled), itiscreated in the following manner using the sourceslisted above
in the same order:

* A temporary database, the “server resource database”, is created from the string returned
by XResour ceManager Stri ng or, if XResour ceManager St ri ng returns NULL, the
contents of a resource file in the user's home directory. On POSIX-based systems, the usual name
for this user preference resource fileis$HOME/. Xdef aul t s.

* If alanguage procedure has been set, Xt Di spl ayl ni ti al i ze first searches the command line
for the option “-xnlLanguage’, or for a -xrm option that specifies the xnlLanguage/XnlLanguage
resource, as specified by Section 2.4. If such a resource is found, the value is assumed to be
entirely in XPCS, the X Portable Character Set. If neither option is specified on the command line,
Xt Di spl ayl nitialize queriesthe server resource database (which is assumed to be entirely
in XPCS) for the resource name. xnl Language, class Class. Xnl Language where name and
Class are the application_name and application_class specified to Xt Di spl ayl niti al i ze.
Thelanguage procedureis then invoked with the resource value if found, el se the empty string. The
string returned from the language procedure is saved for all future references in the Intrinsics that
require the per-display language string.

» The screen resource database is initialized by parsing the command line in the manner specified
by Section 2.4.

* If alanguage procedure has not been set, the initial database is then queried for the resource
name. xnl Language, class Class. Xnl Language as specified above. If this database query
fails, the server resource database is queried; if this query aso fails, the language is determined
from the environment; on POSI X-based systems, thisis done by retrieving the value of the LANG
environment variable. If no language string is found, the empty string is used. This language string
issaved for all future referencesin the Intrinsics that require the per-display language string.

» After determining the language string, the user's environment resource file is then merged into
the initial resource database if the file exists. This file is user-, host-, and process-specific and is
expected to contain user preferences that are to override those specifications in the per-display
and per-screen resources. On POSIX-based systems, the user's environment resource file name
is specified by the value of the XENVIRONMENT environment variable. If this environment
variable does not exist, the user's home directory is searched for afile named . Xdef aul t s- host,
where host is the host name of the machine on which the application is running.

e The per-screen resource specifications are then merged into the screen resource database, if
they exist. These specifications are the string returned by XScr eenResour ceSt ri ng for the
respective screen and are owned entirely by the user.

» Next, the server resource database created earlier is merged into the screen resource database. The
server property, and corresponding user preference file, are owned and constructed entirely by the
user.

» The application-specific user resource file from the local host is then merged into the screen
resource database. This file contains user customizations and is stored in a directory owned by
the user. Either the user or the application or both can store resource specifications in the file.
Each should be prepared to find and respect entries made by the other. The file name is found
by calling Xr nSet Dat abase with the current screen resource database, after preserving the
origina display-associated database, then calling Xt Resol vePat hnane with the parameters
(display, NULL, NULL, NULL, path, NULL, 0, NULL), where path is defined in an operating-
system-specific way. On POSI X-based systems, path is defined to be the value of the environment
variable XUSERFILESEARCHPATH if thisisdefined. If XUSERFILESEARCHPATH isnot
defined, an implementation-dependent default value is used. This default value is constrained in
the following manner:

o If the environment variadble XAPPLRESDIR is not defined, the default
XUSERFILESEARCHPATH must contain at least six entries. These entries must contain
$HOME as the directory prefix, plus the following substitutions:

1. 9% W, %A or uUC, W, %, %, %

30

Widget Instantiation

2. 9C, N, %

3. 9, N

4. UN, % or oN, %, %, %
5. UN, %

6. U\

The order of these six entries within the path must be as given above. The order and use of
substitutions within a given entry are implementati on-dependent.

» |f XAPPLRESDIR isdefined, the default XUSERFILESEARCHPATH must contain at least
seven entries. These entries must contain the following directory prefixes and substitutions:

$XAPPLRESDI R W th UuC, U, % or UC, YN, %, %, %
$XAPPLRESDI R wth UC, 9N, %

$XAPPLRESDI R wth o, YN

$XAPPLRESDI R wth oN, 9% or ON, %, %, %
$XAPPLRESDI R wth oN, 9%

$XAPPLRESDI R wth oN

$HOVE with o

NogakwNRE

The order of these seven entries within the path must be as given above. The order and use of
substitutions within a given entry are implementati on-dependent.
 Last, the application-specific class resource file from the local host is merged into the screen
resource database. This file is owned by the application and is usualy instaled in a system
directory when the application is installed. It may contain sitewide customizations specified
by the system manager. The name of the application class resource file is found by calling
Xt Resol vePat hname with the parameters (display, “app-defaults’, NULL, NULL, NULL,
NULL, 0, NULL). Thisfileis expected to be provided by the developer of the application and may
be required for the application to function properly. A simple application that wants to be assured
of having a minimal set of resources in the absence of its class resource file can declare fallback
resource specifications with Xt AppSet Fal | backResour ces. Note that the customization
substitution string is retrieved dynamically by Xt Resol vePat hnane so that the resolved file
name of the application classresourcefile can be affected by any of the earlier sourcesfor the screen
resource database, even though the contents of the class resourcefile have lowest precedence. After
calling Xt Resol vePat hnane, the original display-associated database is restored.

To obtain the resource database for a particular screen, use Xt Scr eenDat abase.
XrnDat abase Xt Scr eenDat abase(screen);

screen Specifies the screen whose resource database is to be
returned.

The Xt Scr eenDat abase function returns the fully merged resource database as specified above,
associated with the specified screen. If the specified screen does not belongtoabDi spl ay initialized
by Xt Di spl ayl ni tialize, theresults are undefined.

To obtain the default resource database associated with a particular display, use Xt Dat abase.
Xr nDat abase Xt Dat abase(di spl ay);
display Specifies the display.

The Xt Dat abase function is equivalent to Xr mGet Dat abase. It returns the database associated
with the specified display, or NULL if a database has not been set.

To specify a default set of resource values that will be used to initialize the resource database if
no application-specific class resource file is found (the last of the six sources listed above), use
Xt AppSet Fal | backResour ces.

voi d Xt AppSet Fal | backResour ces(app_context, specification_list);

31

Widget Instantiation

app_context Specifies the application context in
which the fallback specifications will be
used.

specification_list Specifies a NULL-terminated list of

resource specifications to preload the
database, or NULL.

Each entry in specification list points to a string in the format of Xr nmPut Li neResour ce.
Following a call to Xt AppSet Fal | backResour ces, when aresource database is being created
for a particular screen and the Intrinsics are not able to find or read an application-specific class
resource file according to the rules given above and if specification list is not NULL, the resource
specifications in specification list will be merged into the screen resource database in place of the
application-specific class resource file. Xt AppSet Fal | backResour ces isnot required to copy
specification_list; the caller must ensure that the contents of thelist and of the strings addressed by the
list remainvalid until all displaysareinitialized or until Xt AppSet Fal | backResour ces iscalled
again. The value NULL for specification_list removes any previous fallback resource specification
for the application context. The intended use for fallback resourcesisto provide aminimal number of
resourcesthat will make the application usable (or at |east terminate with hel pful diagnostic messages)
when some problem existsin finding and loading the application defaultsfile.

Parsing the Command Line

The Xt OpenDi spl ay function first parses the command line for the following options:
-display Specifies the display name for XQpenDi spl ay.

-name Sets the resource name prefix, which overrides the application name
passed to Xt OpenDi spl ay.

-xnllanguage Specifies the initial language string for establishing locale and for
finding application class resource files.

XtDisplaylnitialize has a table of standard command line options that are passed to
Xr mPar seConmmand for adding resources to the resource database, and it takes as a parameter
additional application-specific resource abbreviations. The format of thistable is described in Section
15.9in Xlib — C Language X Interface.

t ypedef enum {

Xr nopt i onNoAr g, /* Value is specified in OptionDescRec.val ue */
Xrnoptionl sArg, /* Value is the option string itself */
XrnoptionStickyArg, /* Value is characters inmediately follow ng option */
Xr nopt i onSepAr g, /* Value is next argunent in argv */

Xrnopt i onResAr g, /* Use the next argunment as input to XrnPutLi neResourc
Xrnmopt i onSki pAr g, /* lgnore this option and the next argunment in argv */

XrnoptionSki pNArgs, /* lIgnore this option and the next */
/* OptionDescRec.value argunments in argv */
XrnoptionSkipLine /* lIgnore this option and the rest of argv */
} XrmOpti onKi nd;

typedef struct {

char *option; /* Option nanme in argv */

char *specifier; /* Resource nanme (without application nane) */
XrnOptionKind argKind; /* Location of the resource value */

XPoi nter val ue; /* Value to provide if XrnoptionNoArg */

} XrmOptionDescRec, *XrnmOptionDesclLi st;

The standard table contains the following entries:

32

Widget Instantiation

Option String Resour ce Name Argument Kind Resource Value
-background *packground SepArg next argument
-bd *borderColor SepArg next argument
-bg *packground SepArg next argument
-borderwidth .borderWidth SepArg next argument
-bordercolor *borderColor SepArg next argument
-bw .borderWidth SepArg next argument
-display display SepArg next argument
-fg *foreground SepArg next argument
-fn *font SepArg next argument
-font *font SepArg next argument
-foreground *foreground SepArg next argument
-geometry .geometry SepArg next argument
-iconic .conic NoArg "true"

-name .name SepArg next argument
-reverse reverseVideo NoOArg "on"

-rv .reverseVideo NoArg "on"

+rv reverseVideo NoArg "off"
-selectionTimeout .SelectionTimeout SepArg next argument
-synchronous .Synchronous NoArg "on"
+synchronous .synchronous NoArg "off"

-title title SepArg next argument
-xnllanguage xnlLanguage SepArg next argument
-Xrm next argument ResArg next argument
-xtsessionlD .sessionlD SepArg next argument

Note that any unique abbreviation for an option name in the standard table or in the application table
is accepted.

If reverseVideois Tr ue, the values of Xt Def aul t For egr ound and Xt Def aul t Backgr ound
are exchanged for all screens on the Display.

The value of the synchronous resource specifies whether or not Xlib is put into synchronous mode.
If avalueisfound in the resource database during display initialization, Xt Di spl ayl niti ali ze
makesacall to XSynchr oni ze for all display connections currently open in the application context.
Therefore, when multiple displays areinitialized in the same appli cation context, the most recent value
specified for the synchronous resource is used for al displays in the application context.

The value of the selectionTimeout resource applies to all displays opened in the same application
context. When multiple displays are initialized in the same application context, the most recent value
specified is used for al displaysin the application context.

The-xrm option providesamethod of setting any resourcein an application. The next argument should
be a quoted string identical in format to a line in the user resource file. For example, to give a red
background to al command buttons in an application named xh, you can start it up as

xmh -xrm ' xmh* Command. background: red

When it parses the command line, Xt Di spl ayl ni ti al i ze merges the application option table
with the standard option table before calling the Xlib Xr nPar seConmrand function. An entry in the

33

Widget Instantiation

application table with the same name as an entry in the standard table overrides the standard table
entry. If an option name is a prefix of another option name, both names are kept in the merged table.
The Intrinsics reserve all option names beginning with the characters “-xt” for future standard uses.

Creating Widgets

The creation of widget instances is a three-phase process:

1. The widgets are allocated and initialized with resources and are optionally added to the managed
subset of their parent.

2. All composite widgetsare notified of their managed children in abottom-up traversal of the widget
tree.

3. The widgets create X windows, which then are mapped.

To start the first phase, the application calls Xt Cr eat eW dget for al its widgets and adds
some (usualy, most or al) of its widgets to their respective parents managed set by calling
Xt ManageChi | d. To avoid an O(n2) creation process where each composite widget lays itself out
each timeawidget is created and managed, parent widgets are not notified of changesin their managed
set during this phase.

After al widgets have been created, the application calls Xt Real i zeW dget with the top-level
widget to execute the second and third phases. Xt Real i zeW dget first recursively traverses the
widget tree in a postorder (bottom-up) traversal and then notifies each composite widget with one or
more managed children by means of its change_managed procedure.

Notifying a parent about its managed set involves geometry layout and possibly geometry negotiation.
A parent deals with constraints on its size imposed from above (for example, when a user specifies
the application window size) and suggestions made from below (for example, when a primitive child
computes its preferred size). One difference between the two can cause geometry changes to ripple
in both directions through the widget tree. The parent may force some of its children to change size
and position and may issue geometry requests to its own parent in order to better accommodate all its
children. Y ou cannot predict where anything will go on the screen until this process finishes.

Consequently, in the first and second phases, no X windows are actually created, because it is likely
that they will get moved around after creation. This avoids unnecessary requests to the X server.

Finally, Xt Real i zeW dget startsthethird phase by making a preorder (top-down) traversal of the
widget tree, alocates an X window to each widget by means of its realize procedure, and finally maps
the widgets that are managed.

Creating and Merging Argument Lists

Many Intrinsics functions may be passed pairs of resource names and values. These are passed as an
arglist, a pointer to an array of Ar g structures, which contains

t ypedef struct {
String nane;
Xt ArgVal val ue;
} Arg, *ArglList;

where Xt Ar gVal isasdefined in Section 1.5.

If the size of theresourceislessthan or equal to thesize of an Xt Ar gVal , theresourcevaueis stored
directly in value; otherwise, a pointer to it is stored in value.

Tosetvaluesinan Ar gLi st , use Xt Set Ar g.

34

Widget Instantiation

voi d Xt Set Arg(arg, nane, value);

arg Specifies the name/value pair to set.
name Specifies the name of the resource.
value Specifies the value of the resource if it will fit in an

Xt Ar gVal , else the address.

The Xt Set Ar g function is usualy used in a highly stylized manner to minimize the probability of
making a mistake; for example:

Arg args| 20];

int n;
n = 0;
Xt Set Arg(args[n], XtNnheight, 100); n++;
Xt Set Arg(args[n], XtNwi dth, 200); n++;

Xt Set Val ues(w dget, args, n);

Alternatively, an application can statically declare the argument list and use Xt Nurrber :

static Args args[] = {
{ Xt Nhei ght, (XtArgVal) 100},
{ Xt N\wi dt h, (XtArgVal) 200},

}l
Xt Set Val ues(W dget, args, XtNunber(args));

Note that you should not use expressions with side effects such as auto-increment or auto-decrement
within the first argument to Xt Set Ar g. Xt Set Ar g can be implemented as a macro that evaluates
the first argument twice.

To merge two arglist arrays, use Xt Mer geAr gLi st s.

ArgLi st Xt MergeArgLi sts(argsl, num.argsl, args2, num.args?2);

argsl Specifies the first argument list.

num_argsl Specifies the number of entries in the first
argument list.

args? Specifies the second argument list.

num_args2 Specifies the number of entries in the second
argument list.

The Xt Mer geAr gLi st s function allocates enough storage to hold the combined arglist arrays and
copies them into it. Note that it does not check for duplicate entries. The length of the returned list
is the sum of the lengths of the specified lists. When it is no longer needed, free the returned storage
by using Xt Fr ee.

All Intrinsics interfaces that require Ar gLi st arguments have analogs conforming to the ANSI
C variable argument list (traditionally caled “varargs’) calling convention. The name of the
analog is formed by prefixing “Va' to the name of the corresponding Ar gLi st procedure; e.g.,
Xt VaCr eat eW dget . Each procedure named Xt Vasomething takes asits last arguments, in place
of the corresponding Ar gLi st/ Car di nal parameters, a variable parameter list of resource name
and value pairswhere each nameis of type St r i ng and each valueisof type Xt Ar gVal . Theend of
thelist isidentified by a name entry containing NULL. Devel opers writing in the C language wishing
to pass resource name and value pairs to any of these interfaces may use the Ar gLi st and varargs
forms interchangeably.

35

Widget Instantiation

Two special names are defined for use only in varargs listss Xt VaTypedArg and
Xt VaNest edLi st .

#def i ne Xt VaTypedArg "Xt VaTypedArg"

If the name Xt VaTypedAr g is specified in place of a resource name, then the following four
arguments are interpreted as a name/type/val ue/size tuple where name is of type St r i ng, typeis of
type St ri ng, value is of type Xt Ar gVal , and size is of type int. When a varargs list containing
Xt VaTypedAr g is processed, a resource type conversion (see the section called “Resource
Conversions’) isperformed if necessary to convert the value into the format required by the associated
resource. If type is XtRString, then value contains a pointer to the string and size contains the number
of bytes allocated, including the trailing null byte. If type is not XtRString, then if sizeis less than or
equal to si zeof (Xt Ar gVal), the value should be the data cast to the type Xt Ar gVal , otherwise
value is a pointer to the data. If the type conversion fails for any reason, awarning message is issued
and thelist entry is skipped.

#def i ne Xt VaNest edLi st "Xt VaNestedLi st"

If thename Xt VaNest edLi st isspecifiedin place of aresource name, then the following argument
is interpreted as an Xt Var Ar gsLi st value, which specifies another varargs list that is logically
inserted into the original list at the point of declaration. The end of the nested list isidentified with a
name entry containing NULL. Varargs lists may nest to any depth.

To dynamically allocate a varargs list for use with Xt VaNest edLi st in multiple calls, use
Xt VaCr eat eAr gsLi st .

t ypedef Xt Poi nter XtVarArgsList;
Xt Var Ar gsLi st Xt VaCr eat eAr gsLi st (unused, ...);

unused This argument is not currently used and must be
specified asNULL.

Specifies avariable parameter list of resource name and
value pairs.

The Xt VaCr eat eAr gsLi st function alocates memory and copies its arguments into a single
list pointer, which may be used with Xt VaNest edLi st . The end of both lists is identified by a
name entry containing NULL. Any entries of type Xt VaTypedAr g are copied as specified without
applying conversions. Data passed by reference (including Strings) are not copied, only the pointers
themselves; the caller must ensure that the dataremain valid for the lifetime of the created varargslist.
Thelist should be freed using Xt Fr ee when no longer needed.

Use of resource files and of the resource database is generally encouraged over lengthy arglist or
varargs lists whenever possible in order to permit modification without recompilation.

Creating a Widget Instance

To create an instance of awidget, use Xt Cr eat eW dget .
W dget Xt Creat eW dget (nane, object_class, parent, args, num.args);

name Specifies the resource instance name for
the created widget, which is used for
retrieving resources and, for that reason,
should not be the same as any other
widget that isachild of the same parent.

36

Widget Instantiation

object_class Specifies the widget class pointer for the

created object. Must be objectClass or
any subclass thereof.

parent Specifies the parent widget. Must be of

class Object or any subclass thereof.

args Specifies the argument list to override

any other resource specifications.

num_args Specifies the number of entries in the

argument list.

The Xt Cr eat eW dget function performs all the boilerplate operations of widget creation, doing
the following in order:

Checksto seeif the class initialize procedure has been called for this class and for all superclasses
and, if not, calls those necessary in a superclass-to-subclass order.

If the specified classis not cor eW dget C ass or a subclass thereof, and the parent's classis a
subclass of conposi t eW dget Cl ass and either no extension record in the parent's composite
class part extension field exists with the record _type NULL QUARK or the accepts objects field
in the extension record is Fal se, Xt Cr eat eW dget issues afatal error; see the section called
“Addition of Children to a Composite Widget: The insert_child Procedure” and Chapter 12,
Nonwidget Objects.

If the specified class contains an extension record in the object class part extension field
with record_type NULLQUARK and the allocate field is not NULL, the procedure is
invoked to allocate memory for the widget instance. If the parent is a member of the class
const rai nt Wdget d ass, the procedure also allocates memory for the parent's constraints
and stores the address of this memory into the constraints field. If no allocate procedure is found,
the Intrinsics allocate memory for the widget and, when applicable, the constraints, and initializes
the constraints field.

Initializes the Core nonresource data fields self, parent, widget class, being_destroyed, name,
managed, window, visible, popup_list, and num_popups.

Initializes the resource fields (for example, background pixel) by using the Cor eCl assPart

resource lists specified for this class and all superclasses.

If the parent isamember of theclassconst r ai nt W dget Cl ass, initializesthe resource fields
of the constraints record by using the Const r ai nt Cl assPart resource lists specified for the
parent's class and all superclassesupto constrai nt W dget C ass.

Callstheinitialize procedures for the widget starting at the Object initialize procedure on down to
the widget's initialize procedure.

If the parent is a member of the class constrai nt Wdget d ass, cals the
Constrai nt Cl assPart initialize procedures, starting at const r ai nt W dget C ass on
down to the parent's Const r ai nt Cl assPart initialize procedure.

If the parent isamember of theclassconposi t eW dget C ass, putsthewidget into its parent's
children list by calling its parent's insert_child procedure. For further information, see the section
called “Addition of Children to a Composite Widget: The insert_child Procedure”.

To create an instance of awidget using varargs lists, use Xt VaCr eat eW dget .

W dget Xt VaCreat eW dget (nane, object class, parent, ...);

name Specifies the resource name for the
created widget.

object_class Specifies the widget class pointer for the

created object. Must be objectClass or
any subclass thereof.

parent Specifies the parent widget. Must be of

class Object or any subclass thereof.

37

Widget Instantiation

Specifies the variable argument list
to override any other resource
specifications.

The Xt VaCr eat eW dget procedureisidentical in function to Xt Cr eat eW dget with the args
and num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Creating an Application Shell Instance

An application can have multiple top-level widgets, each of which specifies a unique widget tree that
can potentially be on different screens or displays. An application uses Xt AppCr eat eShel | to
create independent widget trees.

W dget Xt AppCr eat eShel | (nane, application_cl ass, wi dget _cl ass,
di splay, args, numargs);

name Specifies the instance name of the
shell widget. If name is NULL,
the application name passed to
XtDisplaylnitializeisused.

application_class Specifies the resource class string
to be used in place of the widget
class_name string when widget_class is
appl i cati onShel | Wdget d ass
or a subclass thereof.

widget_class Specifies the widget class
for the top-level widget (eg.,
appl i cati onShel | Wdgetd ass).

display Specifies the display for the default
screen and for the resource database used
to retrieve the shell widget resources.

args Specifies the argument list to override
any other resource specifications.

num_args Specifies the number of entries in the
argument list.

The Xt AppCr eat eShel | function creates a new shell widget instance as the root of a widget
tree. The screen resource for this widget is determined by first scanning args for the XtNscreen
argument. If no XtNscreen argument is found, the resource database associated with the default
screen of the specified display is queried for the resource name.screen, class Class.Screen where
Class is the specified application class if widget class is appl i cati onShel | W dget d ass
or a subclass thereof. If widget _class is not appl i cat i onShel | W dget O ass or a subclass,
Classisthe class namefield fromthe Cor ed assPart of the specified widget_class. If thisquery
fails, the default screen of the specified display is used. Once the screen is determined, the resource
database associated with that screen is used to retrieve all remaining resources for the shell widget not
specified in args. The widget name and Class as determined above are used as the leftmost (i.e., root)
componentsin all fully qualified resource names for objects within this widget tree.

If the specified widget class is a subclass of WM Shell, the name and Class as determined above
will be stored into the WM _CLASS property on the widget's window when it becomes realized.
If the specified widget_class is appl i cati onShel | W dget O ass or a subclass thereof, the
WM_COMMAND property will also be set from the values of the XtNargv and XtNargc resources.

To create multiple top-level shells within a single (logical) application, you can use one of two
methods:

38

Widget Instantiation

» Designate one shell asthereal top-level shell and create the others as pop-up children of it by using
Xt Cr eat ePopupShel | .
» Haveall shells as pop-up children of an unrealized top-level shell.

The first method, which is best used when there is a clear choice for what is the main window, leads
to resource specifications like the following:

xmai |l . geonetry: ... (the main w ndow)
xmai |l . read. geonetry: ... (the read wi ndow)
xmai | . conmpose. geonetry: ... (the conpose w ndow)

The second method, which is best if there is no main window, leads to resource specifications like

the following:

xmai | . headers. geonetry: ... (the headers wi ndow)
xmai |l . read. geonetry: ... (the read wi ndow)
xmai | . conpose. geonetry: ... (the conpose w ndow)

To create a top-level widget that is the root of a widget tree using varargs lists, use
Xt VaAppCr eat eShel | .

W dget Xt VaAppCreateShell (nane, application_class, w dget_ class,
di splay,);

name Specifies the instance name of the
shell widget. If name is NULL,
the application name passed to
XtDisplaylnitializeisused.

application_class Specifies the resource class string
to be used in place of the widget
class_name string when widget_class is
appl i cati onShel | W dget d ass
or a subclass thereof.

widget_class Specifies the widget class for the top-
level widget.

display Specifies the display for the default
screen and for the resource database used
to retrieve the shell widget resources.

Specifies the variable argument list
to override any other resource
specifications.

The Xt VaAppCr eat eShel | procedureisidentical infunctionto Xt AppCr eat eShel | with the
args and num_args parameters replaced by avarargslist, as described in Section 2.5.1.

Convenience Procedure to Initialize an Application

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial root shell instance, an application may use Xt QpenApplication or
Xt VaOpenAppl i cati on.

W dget Xt OpenAppl i cati on(app_context _return, application_class,
options, numoptions, argc_in_out, argv_in _out, fallback _resources,
wi dget _cl ass, args, num.args);

39

Widget Instantiation

app_context_return Returns the application context, if non-
NULL.

application_class Specifies the class name of the
application.

options Specifiesthe command line optionstable.

num_options Specifies the number of entries in
options.

argc_in_out Specifies a pointer to the number of

command line arguments.

argv_in_out Specifies a pointer to the command line
arguments.
fallback_resources Specifiesresourcevaluesto beused if the

application class resource file cannot be
opened or read, or NULL.

widget_class Specifies the class of the widget to be
created. Must be shellWidgetClass or a
subclass.

args Specifies the argument list to override

any other resource specifications for the
created shell widget.

num_args Specifies the number of entries in the
argument list.

The Xt OpenApplication function cals XtToolkitlnitialize followed by
Xt Creat eAppl i cati onCont ext, then calls Xt OpenDi spl ay with display_string NULL
and application_name NULL, and finally cals Xt AppCr eat eShel I with name NULL, the
specified widget_class, an argument list and count, and returns the created shell. The recommended
widget_class is sessi onShel | W dget O ass. The argument list and count are created by
merging the specified args and num_args with a list containing the specified argc and argv.
The modified argc and argv returned by Xt Di spl ayl niti al i ze are returned in argc_in_out
and argv_in out. If app_context_return is not NULL, the created application context is also
returned. If the display specified by the command line cannot be opened, an error message is
issued and Xt OpenAppl i cat i on terminates the application. If fallback resourcesis non-NULL,
Xt AppSet Fal | backResour ces is called with the value prior to calling Xt OpenDi spl ay.

W dget Xt VaOpenApplication(app_context_return, application_class,
options, numoptions, argc_in_out, argv_in_out, fallback_resources,
wi dget _cl ass,);

app_context_return Returns the application context, if non-
NULL.

application_class Specifies the class name of the
application.

options Specifiesthe command lineoptionstable.

num_options Specifies the number of entries in
options.

argc_in_out Specifies a pointer to the number of

command line arguments.

40

Widget Instantiation

argv_in_out Specifies the command line arguments
array.
fallback_resources Specifiesresourcevaluesto beused if the

application class resource file cannot be
opened, or NULL.

widget_class Specifies the class of the widget to be
created. Must be shellWidgetClass or a
subclass.

Specifies the variable argument list
to override any other resource
specifications for the created shell.

The Xt VaOpenAppl i cat i on procedure isidentical in function to Xt OQpenAppl i cat i on with
the args and num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Widget Instance Allocation: The allocate Procedure

A widget class may optionaly provide an instance allocation procedure in the
nj ect A assExt ensi on record.

When the call to create awidget includes avarargslist containing Xt VaTypedAr g, these arguments
will be passed to the allocation procedurein an Xt TypedAr glLi st .

typedef struct {

String nane;

String type;

Xt ArgVal val ue;

int size;

} Xt TypedArg, *XtTypedArgList;

The allocate procedure pointer in the Obj ect Cl assExtension record is of type
(*Xt Al l ocat eProc).

t ypedef voi d (*Xt Al l ocat eProc) (w dget _cl ass, constraint_si ze,
nore_bytes, args, num.args, typed_args, numtyped_args, new_return,
nore_bytes return);

widget_class Specifies the widget class of the instance
to allocate.
constraint_size Specifiesthe size of the constraint record

to alocate, or 0.

more_bytes Specifiesthe number of auxiliary bytes of
memory to allocate.

args Specifiestheargument list asgiveninthe
call to create the widget.

num args Specifies the number of arguments.
typed_args Specifies the list of typed arguments
given in the cal to create the widget.
num_typed_args Specifiesthe number of typed arguments.
new_return Returns a pointer to the newly allocated

instance, or NULL in case of error.

41

Widget Instantiation

more_bytes return Returns the auxiliary memory if it was
requested, or NULL if requested and an
error occurred; otherwise, unchanged.

At widget allocation time, if an extension record with record type equal to NULLQUARK
is located through the object class part extension field and the allocate field is
not NULL, the (*XtAllocateProc) will be invoked to alocate memory for the
widget. If no ObjectClassPart extension record is declared with record type equal to
NULLQUARK, then Xt I nherit Al | ocat e and Xt | nheri t Deal | ocat e are assumed. If no
(*Xt Al'l ocat eProc) isfound, the Intrinsics will allocate memory for the widget.

An (* Xt Al | ocat ePr oc) must perform the following:

* Allocate memory for the widget instance and return it in new_return. The memory must be at least
wc->core_class.widget_size bytesin length, double-word aligned.

* Initializethe core.constraintsfield in theinstance record to NULL or to point to a constraint record.
If constraint_size is not 0, the procedure must alocate memory for the constraint record. The
memory must be double-word aligned.

 If more_bytesisnot O, then the address of a block of memory at least more_bytes in size, double-
word aligned, must be returned in the more_bytes return parameter, or NULL to indicate an error.

A class allocation procedure that envelops the allocation procedure of a superclass must rely on the
enveloped procedure to perform the instance and constraint allocation. Allocation procedures should
refrainfrominitializing fieldsin thewidget record except to store pointersto newly all ocated additional
memory. Under no circumstances should an alocation procedure that envelopes its superclass
allocation procedure modify fieldsin the instance part of any superclass.

Widget Instance Initialization: The initialize Procedure

Theinitialize procedure pointer in awidget classisof type (* Xt I ni t Proc) .
typedef void (*XtlnitProc)(request, new, args, numargs);

request Specifies a copy of the widget with resource values
as requested by the argument list, the resource
database, and the widget defaults.

new Specifies the widget with the new values, both
resource and nonresource, that are actually allowed.

args Specifies the argument list passed by the client,
for computing derived resource values. If the
client created the widget using a varargs form,
any resources specified via Xt VaTypedAr g are
converted to the widget representation and the list
istransformed into the Ar gLi st format.

num args Specifiesthe number of entriesinthe argument list.
An initialization procedure performs the following:

* Allocates space for and copies any resources referenced by address that the client is allowed to free
or modify after the widget has been created. For example, if awidget hasafieldthatisaSt ri ng,
it may choose not to depend on the characters at that address remaining constant but dynamically
alocate space for the string and copy it to the new space. Widgets that do not copy one or more
resources referenced by address should clearly so state in their user documentation.

Note

It is not necessary to allocate space for or to copy callback lists.

42

Widget Instantiation

e Computes values for unspecified resource fields. For example, if width and height are zero, the
widget should compute an appropriate width and height based on its other resources.

Note

A widget may directly assign only its own width and height within the initialize,
initialize_hook, set values, and set_values hook procedures; see Chapter 6, Geometry
Management.
» Computes values for uninitialized nonresource fields that are derived from resource fields. For
example, graphics contexts (GCs) that the widget uses are derived from resources like background,
foreground, and font.

Aninitialization procedure al so can check certain fieldsfor internal consistency. For example, it makes
no sense to specify a colormap for a depth that does not support that colormap.

Initialization procedures are called in superclass-to-subclass order after al fields specified in the
resource lists have been initialized. The initialize procedure does not need to examine args and
num args if al public resources are declared in the resource list. Most of the initialization code
for a specific widget class deals with fields defined in that class and not with fields defined in its
superclasses.

If a subclass does not need an initialization procedure because it does not need to perform any of the
above operations, it can specify NULL for the initialize field in the class record.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of asuperclass often areincorrect for asubclass, and in this case, the subclass must modify
or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclassinitialize procedure are too small and need to beincremented by the
sizeof the surround. The subclass needsto know if itssuperclass's size was cal cul ated by the superclass
or was specified explicitly. All widgets must place themselves into whatever size is explicitly given,
but they should compute a reasonable size if no size is requested.

The request and new arguments provide the necessary information for a subclass to determine the
difference between an explicitly specified field and a field computed by a superclass. The request
widget isacopy of thewidget asinitialized by the arglist and resource database. The new widget starts
with the valuesin the request, but it has been updated by all superclassinitialization procedures called
so far. A subclass initialize procedure can compare these two to resolve any potential conflicts.

In the above example, the subclass with the visual surround can see if the width and height in the
request widget are zero. If so, it addsits surround size to the width and height fieldsin the new widget.
If not, it must make do with the size originally specified.

The new widget will become the actual widget instance record. Therefore, the initialization procedure
should do all itswork on the new widget; the request widget should never be modified. If theinitialize
procedure needs to call any routines that operate on a widget, it should specify new as the widget
instance.

Constraint Instance Initialization: The
ConstraintClassPart initialize Procedure

The constraint initialization procedure pointer, found in the Constrai nt O assPart initialize
field of the widget class record, is of type (* Xt | ni t Proc). The values passed to the parent
constraint initialization procedures are the same asthose passed to the child's classwidget initialization
procedures.

The constraints field of the request widget points to a copy of the constraints record asinitialized by
the arglist and resource database.

43

Widget Instantiation

The constraint initialization procedure should compute any constraint fields derived from constraint
resources. It can make further changes to the new widget to make the widget and any other constraint
fields conform to the specified constraints, for example, changing the widget's size or position.

If aconstraint class does not need a constraint initialization procedure, it can specify NULL for the
initialize field of the Const r ai nt G assPart inthe classrecord.

Nonwidget Data Initialization: The initialize_hook
Procedure

Note

The initialize_hook procedure is obsolete, as the same information is now available to the
initialize procedure. The procedure has been retained for those widgetsthat used it in previous
releases.

The initialize_hook procedure pointer is of type (* Xt Ar gsPr oc):
typedef void (*XtArgsProc)(w, args, numargs);
w Specifies the widget.

args Specifies the argument list passed by the client. If
the client created the widget using a varargs form,
any resources specified via Xt VaTypedAr g are
converted to the widget representation and the list
istransformed into the Ar gLi st format.

num args Specifiesthe number of entriesinthe argument list.

If this procedureisnot NULL, it is called immediately after the corresponding initialize procedure or
inits placeif theinitializefieldisNULL.

Theinitialize_hook procedureallowsawidget instanceto initialize nonresource datausing information
from the specified argument list asif it were aresource.

Realizing Widgets
Torealize awidget instance, use Xt Real i zeW dget .
voi d Xt Real i zeW dget (w);
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is already realized, Xt Real i zeW dget simply returns. Otherwise it performs the
following:

» Bindsall action namesin the widget's trandl ation table to procedures (see the section called “ Action
Names to Procedure Trandations’).

» Makes a postorder traversal of the widget tree rooted at the specified widget and calls each non-
NULL change managed procedure of all composite widgets that have one or more managed
children.

» Constructs an XSet W ndowAt t r i but es structure filled in with information derived from the
Core widget fields and calls the realize procedure for the widget, which adds any widget-specific
attributes and creates the X window.

« If the widget is not a subclass of conposi t eW dget C ass, Xt Real i zeW dget returns;
otherwise it continues and performs the following:

44

Widget Instantiation

» Descends recursively to each of the widget's managed children and calls the realize procedures.
Primitive widgetsthat instantiate children are responsible for realizing those children themsel ves.

» Mapsall of the managed children windowsthat have mapped_when _managed Tr ue. If awidget
is managed but mapped when_managed is Fal se, the widget is allocated visual space but is
not displayed.

If the widget is a top-level shell widget (that is, it has no parent), and mapped_when _managed is
True, Xt Real i zeW dget maps the widget window.

Xt Creat eW dget, XtVaCreat eW dget, XtRealizeW dget, XtManageChil dren,
Xt UnmanageChi | dren, XtUnrealizeWdget, XtSetMappedWhenManaged, and
Xt Dest r oyW dget maintain the following invariants:

* If acomposite widget is realized, then all its managed children are realized.
 If acomposite widget is realized, then all its managed children that have mapped when_managed
Tr ue are mapped.

All Intrinsics functions and all widget routines should accept either realized or unrealized widgets.
When calling the realize or change_managed procedures for children of a composite widget,
Xt Real i zeW dget calsthe procedures in reverse order of appearance in the Conposi t ePar t
children list. By default, this ordering of the realize procedures will result in the stacking order of any
newly created subwindows being top-to-bottom in the order of appearance on the list, and the most
recently created child will be at the bottom.

To check whether or not awidget has been realized, use Xt | sReal i zed.
Bool ean XtlsRealized(w);
w Specifiesthewidget. Must be of class Object or any subclass thereof.

The Xt | sReal i zed function returns Tr ue if the widget has been realized, that is, if the widget has
anonzero window ID. If the specified object is not a widget, the state of the nearest widget ancestor
isreturned.

Some widget procedures (for example, set_values) might wish to operate differently after the widget
has been redlized.

Widget Instance Window Creation: The realize
Procedure

The realize procedure pointer in awidget classis of type (* Xt Real i zePr oc) .

typedef void (*XtRealizeProc)(w, value_mask, attributes);

w Specifies the widget.

value_mask Specifies which fields in the attributes
structure are used.

attributes Specifies the window attributes to use in the

XCr eat eW ndowcall.
The realize procedure must create the widget's window.

Before calling the class realize procedure, the generic Xt Real i zeW dget function fillsin a mask
and a corresponding XSet W ndowAt t ri but es structure. It sets the following fields in attributes
and corresponding bitsin value_mask based on information in the widget core structure:

e The background_pixmap (or background_pixel if background_pixmap is
Xt Unspeci fi edPi xmap) isfilled in from the corresponding field.

45

Widget Instantiation

e Theborder_pixmap (or border_pixel if border_pixmapis Xt Unspeci fi edPi xmap) isfilledin
from the corresponding field.

e Thecolormap isfilled in from the corresponding field.

e Theevent_ maskisfilled in based on the event handlers registered, the event translations specified,
whether the expose field isnon-NULL, and whether visible interest is Tr ue.

e Thebhit_gravity isset to Nor t hWest Gr avi t y if the expose field isNULL.

These or any other fields in attributes and the corresponding bits in value_mask can be set by the
realize procedure.

Note that because realize is not achained operation, the widget classrealize procedure must update the
XSet W ndowAt t ri but es structure with all the appropriate fields from non-Core superclasses.

A widget class can inherit its realize procedure from its superclass during class initialization.
The realize procedure defined for cor eW dget O ass calls Xt Cr eat eW ndow with the passed
value_ mask and attributes and with window_class and visual set to CopyFr onPar ent . Both
conposi t eW dget Cl ass and const r ai nt W dget Cl ass inherit this realize procedure, and
most new widget subclasses can do the same (see the section called “Inheritance of Superclass
Operations’).

The most common noninherited realize procedures set bit_gravity in the mask and attributes to the
appropriate value and then create the window. For exampl e, depending onitsjustification, Label might
set bit_gravitytoWest Gravi ty, Center Gravi ty, or East Gravi t y. Consequently, shrinking
it would just move the bits appropriately, and no exposure event is needed for repainting.

If a composite widget's children should be realized in an order other than that specified (to control
the stacking order, for example), it should call Xt Real i zeW dget on its children itself in the
appropriate order from within its own realize procedure.

Widgets that have children and whose class is not a subclass of conposi t eW dget Cl ass are
responsible for calling Xt Real i zeW dget on their children, usualy from within the redize
procedure.

Realize procedures cannot manage or unmanage their descendants.

Window Creation Convenience Routine

Rather than call the Xlib XCr eat eW ndow function explicitly, arealize procedure should normally
call the Intrinsics analog Xt Cr eat eW ndow, which simplifies the creation of windows for widgets.

voi d Xt Cr eat eW ndow(w, wi ndow_cl ass, vi sual , val ue_nask,
attributes);

w Specifies the widget that defines the
additional window attributed. Must be of
class Core or any subclass thereof.

window_class Specifies the Xlib window
class (for example, | nput Qut put,
I nput Onl y, or
CopyFr onParent).

visual Specifies the visua type (usualy
CopyFronParent).

value_mask Specifies which fields in the attributes
structure are used.

attributes Specifies the window attributes to use in

the XCr eat eW ndowcall.

46

Widget Instantiation

The Xt Cr eat eW ndow function calls the Xlib XCr eat eW ndow function with values from the
widget structure and the passed parameters. Then, it assignsthe created window to the widget'swindow
field.

Xt Cr eat eW ndoweva uatesthefollowing fields of thewidget core structure: depth, screen, parent-
>core.window, X, y, width, height, and border_width.

Obtaining Window Information from a Widget

The Core widget class definition contains the screen and window ids. Thewindow field may be NULL
for awhile (see the section called “ Creating Widgets’” and the section called “ Realizing Widgets’).

The display pointer, the parent widget, screen pointer, and window of a widget are available to the
widget writer by means of macros and to the application writer by means of functions.

Di splay * XtDisplay(w;

w Specifies the widget. Must be of class Core or any subclass thereof.
Xt Di spl ay returnsthe display pointer for the specified widget.

W dget Xt Parent(w);

w Specifiesthe widget. Must be of class Object or any subclass thereof.

Xt Par ent returns the parent object for the specified widget. The returned object will be of class
Object or asubclass.

Screen *Xt Screen(w);

w Specifies the widget. Must be of class Core or any subclass thereof.
Xt Scr een returns the screen pointer for the specified widget.

W ndow Xt W ndow(w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.
Xt W ndow returns the window of the specified widget.

The display pointer, screen pointer, and window of a widget or of the closest widget ancestor of a
nonwidget object are available by means of Xt Di spl ayCOf Obj ect, Xt Scr eenOF Obj ect, and
Xt W ndowOr Qbj ect .

Di splay *XtDi spl ayOr Cbj ect (w) ;

object Specifies the object. Must be of class Object or any
subclass thereof.

Xt Di spl ayOf Obj ect isidentical in function to Xt Di spl ay if the object is awidget; otherwise
Xt Di spl ayOf Obj ect returns the display pointer for the nearest ancestor of object that is of class
Widget or a subclass thereof.

Screen *Xt ScreenO™f Obj ect (obj ect) ;

object Specifies the object. Must be of class Object or any
subclass thereof.

Xt ScreenCf Ohj ect isidentical in function to Xt Scr een if the object is a widget; otherwise
Xt Scr eenCf Qhj ect returns the screen pointer for the nearest ancestor of object that is of class
Widget or a subclass thereof.

47

Widget Instantiation

W ndow Xt W ndowCOf Chj ect (obj ect) ;

object Specifies the object. Must be of class Object or any
subclass thereof.

Xt W ndowOr Cbj ect isidentical in function to Xt W ndow if the object is a widget; otherwise
Xt W ndowCf Obj ect returns the window for the nearest ancestor of object that is of class Widget
or a subclass thereof.

To retrieve the instance name of an object, use Xt Nane.
String Xt Name(object);

object Specifies the object whose name is desired. Must be of
class Object or any subclass thereof.

Xt Name returns a pointer to the instance name of the specified object. The storage is owned by the
Intrinsics and must not be modified. The name is not qualified by the names of any of the object's
ancestors.

Several window attributes are locally cached in the widget instance. Thus, they can be set by the
resource manager and Xt Set Val ues as well as used by routines that derive structures from these
values (for example, depth for deriving pixmaps, background pixel for deriving GCs, and so on) or
inthe Xt Cr eat eW ndowcall.

The x, y, width, height, and border_width window attributes are available to geometry managers.
These fields are maintained synchronously inside the Intrinsics. When an XConf i gur eW ndowis
issued by the Intrinsics on the widget's window (on request of its parent), these values are updated
immediately rather than some time later when the server generatesa Conf i gur eNot i fy event. (In
fact, most widgets do not select Subst r uct ur eNot i fy events.) This ensures that all geometry
calculations are based on the internally consistent toolkit world rather than on either an inconsi stent
world updated by asynchronousConf i gur eNot i f y eventsor aconsistent, but slow, worldinwhich
geometry managers ask the server for window sizes whenever they need to lay out their managed
children (see Chapter 6, Geometry Management).

Unrealizing Widgets

To destroy the windows associated with a widget and its non-pop-up descendants, use
Xt Unr eal i zeW dget .

voi d Xt UnrealizeWdget(w);
w Specifies the widget. Must be of class Core or any subclass thereof.

If the widget is currently unrealized, Xt Unr eal i zeW dget simply returns. Otherwise it performs
the following:

* Unmanages the widget if the widget is managed.

» Makes a postorder (child-to-parent) traversal of the widget tree rooted at the specified widget and,
for each widget that has declared a callback list resource named “unrealizeCallback”, executes the
procedures on the XtNunrealizeCallback list.

* Destroys the widget's window and any subwindows by calling XDest r oyW ndow with the
specified widget's window field.

Any eventsinthequeueor which arrivefollowingacall toXt Unr eal i zeW dget will bedispatched
asif the window(s) of the unrealized widget(s) had never existed.

Destroying Widgets

The Intrinsics provide support

48

Widget Instantiation

e To destroy all the pop-up children of the widget being destroyed and destroy all children of
composite widgets.

» To remove (and unmap) the widget from its parent.

» To call the callback procedures that have been registered to trigger when the widget is destroyed.

» To minimize the number of things awidget has to deall ocate when destroyed.

* To minimize the number of XDest r oyW ndow calls when destroying awidget tree.

To destroy awidget instance, use Xt Dest r oyW dget .
voi d Xt DestroyW dget (w);
w Specifiesthewidget. Must be of class Object or any subclass thereof.

The Xt Dest r oyW dget function provides the only method of destroying a widget, including
widgets that need to destroy themselves. It can be called at any time, including from an application
callback routine of the widget being destroyed. This requires a two-phase destroy processin order to
avoid dangling references to destroyed widgets.

In phase 1, Xt Dest r oyW dget performs the following:

* If the being_destroyed field of the widget is Tr ue, it returnsimmediately.

» Recursively descendsthe widget tree and setsthe being_destroyed field to Tr ue for thewidget and
al normal and pop-up children.

» Addsthewidget to alist of widgets (the destroy list) that should be destroyed whenitissafeto do so.

Entries on the destroy list satisfy the invariant that if w2 occurs after wl on the destroy list, then w2
is not a descendent, either normal or pop-up, of wl.

Phase 2 occurswhen all proceduresthat should execute asaresult of the current event have been called,
including all procedures registered with the event and translation managers, that is, when the current
invocation of Xt Di spat chEvent isabout to return, orimmediately if notin Xt Di spat chEvent .

Inphase 2, Xt Dest r oyW dget performsthe following on each entry in the destroy list in the order
specified:

e If the widget is not a pop-up child and the widget's parent is a subclass
of conpositeWdgetd ass, and if the parent is not being destroyed, it cals
Xt UnnanageChi | d onthewidget and then callsthewidget's parent'sdelete_child procedure (see
the section called “Deletion of Children: The delete_child Procedure”).

» Cadls the destroy calback procedures registered on the widget and al norma and pop-up
descendants in postorder (it calls child callbacks before parent callbacks).

The Xt Dest r oyW dget function then makes second traversal of the widget and all normal and
pop-up descendants to perform the following three items on each widget in postorder:

e If the widget is not a pop-up child and the widget's parent is a subclass of
const rai nt Wdget d ass, it callsthe Const rai nt O assPart destroy procedure for the
parent, then for the parent's superclass, until finaly it callsthe Const r ai nt O assPar t destroy
procedure for const r ai nt W dget d ass.

» Cadlls the Cor ed assPart destroy procedure declared in the widget class, then the destroy
procedure declaredin its superclass, until finally it callsthe destroy procedure declared in the Object
class record. Callback lists are deallocated.

 If the widget class object class part contains an Chj ect Cl assExt ensi on record with the
record_type NULL QUARK and the deallocate field is not NULL, calls the deall ocate procedure
to deallocate the instance and if one exists, the constraint record. Otherwise, the Intrinsics will
deallocate the widget instance record and if one exists, the constraint record.

e CalsXDest r oyW ndowif the specified widget isrealized (that is, hasan X window). The server
recursively destroys all normal descendant windows. (Windows of realized pop-up Shell children,
and their descendants, are destroyed by a shell class destroy procedure.)

49

Widget Instantiation

Adding and Removing Destroy Callbacks

When an application needs to perform additional processing during the destruction of a widget, it
should register a destroy callback procedure for the widget. The destroy callback procedures use the
mechanism described in Chapter 8, Callbacks. The destroy callback list isidentified by the resource
name XtNdestroyCallback.

For example, the following adds an application-supplied destroy callback procedure ClientDestroy
with client datato awidget by calling Xt AddCal | back.

Xt AddCal | back(w, Xt NdestroyCallback, dientDestroy, client_data)

Similarly, the following removes the application-supplied destroy callback procedure ClientDestroy
by calling Xt RenoveCal | back.

Xt RenoveCal | back(w, XtNdestroyCallback, CientDestroy, client_data)

The ClientDestroy argument is of type (* Xt Cal | backProc) ; see the section called “Using
Callback Procedure and Callback List Definitions”.

Dynamic Data Deallocation: The destroy Procedure

The destroy procedure pointers in the Obj ect Cl assPart, Rect Obj Cl assPart, and
Cor e assPart structuresare of type Xt W dget Pr oc.

typedef void XtWdget Proc(w);
w Specifies the widget being destroyed.

The destroy procedures are caled in subclass-to-superclass order. Therefore, a widget's destroy
procedure should deallocate only storage that is specific to the subclass and should ignore the storage
allocated by any of its superclasses. The destroy procedure should deallocate only resources that have
been explicitly created by the subclass. Any resource that was obtained from the resource database
or passed in an argument list was not created by the widget and therefore should not be destroyed by
it. If awidget does not need to deallocate any storage, the destroy procedure entry in its class record
can be NULL.

Deallocating storage includes, but is not limited to, the following steps:

» Cadling Xt Fr ee on dynamic storage allocated with Xt Mal | oc, Xt Cal | oc, and so on.

» Caling XFr eePi xmap on pixmaps created with direct X calls.

» Calling Xt Rel easeGC on GCs allocated with Xt Get GC.

» Caling XFr eeGC on GCs allocated with direct X calls.

» Cadling Xt RenmoveEvent Handl er on event handlers added to other widgets.

» Caling Xt RemoveTi meQut on timers created with Xt AppAddTi meQut .

» Cadling Xt Dest r oyW dget for each child if the widget has children and is not a subclass of
composi t eW dget d ass.

During destroy phase 2 for each widget, the Intrinsics remove the widget from the modal cascade,
unregister al event handlers, remove al key, keyboard, button, and pointer grabs and remove al
callback procedures registered on the widget. Any outstanding selection transfers will time out.

Dynamic Constraint Data Deallocation: The
ConstraintClassPart destroy Procedure

The constraint destroy procedure identified in the ConstraintC assPart
constrai nt Wdget Cl ass. This constraint destroy procedure pointer is of type

50

Widget Instantiation

Xt W dget Proc. The constraint destroy procedures are called in subclass-to-superclass order,
starting at the class of the widget's parent and ending at const r ai nt W dget d ass. Therefore, a
parent's constraint destroy procedure should deallocate only storage that is specific to the constraint
subclass and not storage allocated by any of its superclasses.

If aparent does not need to deallocate any constraint storage, the constraint destroy procedure entry
inits classrecord can be NULL.

Widget Instance Deallocation: The deallocate
Procedure

The deadlocate procedure pointer in the Obj ect Cl assExtension record is of type
Xt Deal | ocat ePr oc.

t ypedef void (*XtDeal |l ocateProc)(w dget, nore_bytes);
widget Specifies the widget being destroyed.

more_bytes Specifies the auxiliary memory received from
the corresponding alocator along with the
widget, or NULL.

When a widget is destroyed, if an Obj ect Cl assExt ensi on record exists in the object
class part extension field with record type NULLQUARK and the deallocate field is not
NULL, the Xt Deal | ocat eProc will be caled. If no ObjectClassPart extension record
is declared with record type equal to NULLQUARK, then XtlnheritAl locate and
Xt I nheritDeal | ocat e are assumed. The responsibilities of the deallocate procedure are to
deallocate the memory specified by more_bytesif it isnot NULL, to deallocate the constraints record
as specified by the widget's core.constraints field if it is not NULL, and to deallocate the widget
instance itself.

If no Xt Deal | ocat ePr oc isfound, itisassumed that the Intrinsics originally allocated the memory
and isresponsible for freeing it.

Exiting from an Application

All X Toolkit applications should terminate by calling Xt Dest r oyAppl i cat i onCont ext and
then exiting using the standard method for their operating system (typicaly, by calling exi t for
POSIX-based systems). The quickest way to make the windows disappear while exiting is to call
Xt UnmapW dget on each top-level shell widget. The Intrinsics have no resources beyond those in
the program image, and the X server will free its resources when its connection to the application is
broken.

Depending upon the widget set in use, it may be necessary to explicitly destroy individual widgets
or widget treeswith Xt Dest r oyW dget beforecalling Xt Dest r oyAppl i cati onCont ext in
order to ensure that any required widget cleanup is properly executed. The application developer must
refer to the widget documentation to learn if awidget needsto perform cleanup beyond that performed
automatically by the operating system. If the client is a session participant (see the section called
“Session Participation™), then the client may wish to resign from the session before exiting. See the
section called “Resigning from a Session” for details.

51

Chapter 3. Composite Widgets and
Their Children

Composite widgets (widgets whose class is a subclass of conposi t eW dget Cl ass) can have
an arbitrary number of children. Consequently, they are responsible for much more than primitive
widgets. Their responsibilities (either implemented directly by the widget class or indirectly by
Intrinsics functions) include:

» Overall management of children from creation to destruction.

« Destruction of descendants when the composite widget is destroyed.

» Physical arrangement (geometry management) of a displayable subset of children (that is, the
managed children).

» Mapping and unmapping of a subset of the managed children.

Overall management is handled by the generic procedures Xt Creat eW dget and
Xt Destr oyW dget . Xt Cr eat eW dget adds children to their parent by calling the parent's
insert_child procedure. Xt Dest r oyW dget removes children from their parent by calling the
parent's delete_child procedure and ensures that all children of a destroyed composite widget also get
destroyed.

Only asubset of the total number of children is actually managed by the geometry manager and hence
possibly visible. For example, a composite editor widget supporting multiple editing buffers might
allocate one child widget for each file buffer, but it might display only a small number of the existing
buffers. Widgetsthat arein this displayabl e subset are called managed widgets and enter into geometry
manager calculations. The other children are called unmanaged widgets and, by definition, are not
mapped by the Intrinsics.

Children are added to and removed from their parent's managed set by using
Xt ManageChi | d, Xt ManageChi | dr en, Xt UnmanageChi | d, Xt UnmanageChi | dr en,and
Xt ChangeManagedSet , which notify the parent to recalculate the physical layout of its children
by calling the parent's change_managed procedure. The Xt Cr eat eManagedW dget convenience
function calls Xt Cr eat eW dget and Xt ManageChi | d onthe result.

Most managed children are mapped, but some widgets can be in a state where they take
up physical space but do not show anything. Managed widgets are not mapped automatically
if their map_when_managed field is Fal se. The default is True and is changed by using
Xt Set MappedWhenManaged.

Each composite widget class declares ageometry manager, whichisresponsiblefor figuring out where
the managed children should appear within the composite widget's window. Geometry management
techniques fall into four classes:

Fixed boxes Fixed boxes have a fixed number of children created
by the parent. All these children are managed, and
none ever makes geometry manager requests.

Homogeneous boxes Homogeneous boxes treat al children equally and
apply the same geometry constraints to each child.
Many clientsinsert and delete widgets freely.

Heterogeneous boxes Heterogeneous boxes have a specific location where
each child is placed. This location usualy is not
specified in pixels, because the window may be
resized, but is expressed rather in terms of the
relationship between achild and the parent or between
the child and other specific children. The class

52

Composite Widgets
and Their Children

of heterogeneous boxes is usually a subclass of
Constraint.

Shell boxes Shell boxes typically have only one child, and the
child's size is usualy exactly the size of the shell.
The geometry manager must communicate with the
window manager, if it exists, and the box must
also accept Confi gureNoti fy events when the
window sizeis changed by the window manager.

Addition of Children to a Composite Widget:
The insert_child Procedure

To add a child to the parent's list of children, the Xt Cr eat eW dget function calls the parent's
class routine insert_child. The insert_child procedure pointer in a composite widget is of type
Xt W dget Proc.

typedef void (*XtWdgetProc)(w;
w Passes the newly created child.

Most composite widgets inherit their superclasss operation. The insert_child routine in
ConpositeWdgetCl ass calls the insert_position procedure andinsertsthe
child at the specified position in the children list, expanding it if necessary.

Some composite widgets define their own insert_child routine so that they can order their childrenin
some convenient way, create companion controller widgets for a new widget, or limit the number or
class of their child widgets. A composite widget class that wishes to allow nonwidget children (see
Chapter 12, Nonwidget Objects) must specify aConposi t eCl assExt ensi on extension record as
described inthe section called “ CompositeClassPart Structure” and set the accepts objectsfieldinthis
recordto Tr ue. If theConposi t ed assExt ensi on recordisnot specified or the accepts objects
fieldisFal se, the composite widget can assumethat all its children are of a subclass of Core without
an explicit subclass test in the insert_child procedure.

If thereis not enough room to insert anew child in the children array (that is, num_childrenis equal
to num_dots), the insert_child procedure must first reallocate the array and update num_slots. The
insert_child procedure then places the child at the appropriate position in the array and increments
the num_children field.

Insertion Order of Children: The
Insert_position Procedure

I nstances of composite widgets sometimes need to specify more about the order in which their children
are kept. For example, an application may want a set of command buttons in some logica order
grouped by function, and it may want buttonsthat represent file namesto be kept in a phabetical order
without constraining the order in which the buttons are created.

An application controls the presentation order of a set of children by supplying an XtNinsertPosition
resource. The insert_position procedure pointer in a composite widget instance is of type
(* Xt OrderProc).

typedef Cardinal (*XtOrderProc)(w;
w Passes the newly created widget.

Compositewidgetsthat allow clientsto order their children (usually homogeneous boxes) can call their
widget instance'sinsert_position procedure from the class'sinsert_child procedure to determine where

53

Composite Widgets
and Their Children

anew child should go inits children array. Thus, a client using a composite class can apply different
sorting criteria to widget instances of the class, passing in a different insert_position procedure
resource when it creates each composite widget instance.

The return value of the insert_position procedure indicates how many children should go before the
widget. Returning zero indicates that the widget should go before al other children, and returning
num_children indicates that it should go after all other children. The default insert_position function
returns num_children and can be overridden by a specific composite widget's resource list or by the
argument list provided when the composite widget is created.

Deletion of Children: The delete_child
Procedure

To remove the child from the parent's children list, the Xt Dest r oyW dget function eventually
causes a call to the Composite parent's class delete child procedure. The delete child procedure
pointer is of type Xt W dget Pr oc.

typedef void (*XtWdgetProc)(w;
w Passes the child being deleted.

Most widgets inherit the delete_child procedure from their superclass. Composite widgets that create
companion widgets define their own delete_child procedure to remove these companion widgets.

Adding and Removing Children from the
Managed Set

The Intrinsics provide a set of generic routines to permit the addition of widgets to or the removal of
widgets from a composite widget's managed set. These generic routines eventually call the composite
widget's change_managed procedure if the procedure pointer is non-NULL. The change_managed
procedure pointer is of type Xt W dget Pr oc. The widget argument specifies the composite widget
whose managed child set has been modified.

Managing Children

To add alist of widgets to the geometry-managed (and hence displayable) subset of their Composite
parent, use Xt ManageChi | dr en.

typedef Widget *WidgetList;
voi d Xt ManageChi |l dren(children, numchildren);

children Specifies a list of child widgets. Each
child must be of class RectObj or any
subclass thereof.

num_children Specifies the number of children in the
list.

The Xt ManageChi | dr en function performs the following:

* Issuesan error if the children do not all have the same parent or if the parent's classis not a subclass
of conposi t eW dget d ass.

» Returnsimmediately if the common parent is being destroyed; otherwise, for each unique child on
the list, Xt ManageChi | dr en ignores the child if it already is managed or is being destroyed,
and marksit if not.

Composite Widgets
and Their Children

« If theparentisrealized and after all children have been marked, it makes some of the newly managed
children viewable:
» Callsthe change _managed routine of the widgets' parent.
e CallsXt Real i zeW dget on each previously unmanaged child that is unrealized.
» Maps each previously unmanaged child that has map_when _managed Tr ue.

Managing children isindependent of the ordering of children and independent of creating and deleting
children. The layout routine of the parent should consider children whose managed field is Tr ue
and should ignore all other children. Note that some composite widgets, especially fixed boxes, call
Xt ManageChi | d from their insert_child procedure.

If the parent widget is realized, its change managed procedure is called to notify it that its set of
managed children has changed. The parent can reposition and resize any of its children. It moves each
child as needed by calling Xt MoveW dget , which first updates the x and y fields and which then
calls XMoveW ndow.

If the composite widget wishes to change the size or border width of any of its children, it
cals Xt Resi zeW dget, which first updates the width, height, and border_width fields and
then calls XConf i gur eW ndow. Simultaneous repositioning and resizing may be done with
Xt Confi gur eW dget ; seethe section called “Widget Placement and Sizing”.

To add asingle child to its parent widget's set of managed children, use Xt ManageChi | d.
voi d Xt ManageChi | d(chil d);

child Specifies the child. Must be of class RectObj or any
subclass thereof.

The Xt ManageChild function constructs a WdgetList of length 1 and cals
Xt ManageChi | dr en.

To create and manage a child widget in a single procedure, use Xt Cr eat eManagedW dget or
Xt VaCr eat eManagedW dget .

W dget Xt Creat eManagedW dget (nanme, w dget _cl ass, parent, args,
num ar gs) ;

name Specifies the resource instance name for
the created widget.
widget_class Specifies the widget class pointer for the

created widget. (rC

parent Specifies the parent widget. Must be of
class Composite or any subclass thereof.

args Specifies the argument list to override
any other resource specifications.

num_args Specifies the number of entries in the
argument list.

The Xt Cr eat eManagedW dget function isaconvenienceroutine that calls Xt Cr eat eW dget
and Xt ManageChi | d.

W dget Xt VaCreat eManagedW dget (nanme, wi dget cl ass, parent,);

name Specifies the resource instance name for
the created widget.
widget_class Specifies the widget class pointer for the

created widget. (rC

55

Composite Widgets
and Their Children

parent Specifies the parent widget. Must be of
class Composite or any subclass thereof.

Specifies the variable argument list
to override any other resource
specifications.

Xt VaCr eat eManagedW dget isidentical infunctionto Xt Cr eat eManagedW dget with the
args and num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Unmanaging Children

Toremove alist of children from a parent widget's managed list, use Xt UnmanageChi | dr en.
voi d Xt UnnanageChi |l dren(children, numchildren);

children Specifies a list of child widgets. Each
child must be of class RectObj or any
subclass thereof.

num_children Specifies the number of children.
The Xt UnmanageChi | dr en function performs the following:

* Returnsimmediately if the common parent is being destroyed.

* Issues an error if the children do not al have the same parent or if the parent is not a subclass of
conposi t eW dget d ass.

» For each unique child on the list, Xt UnmanageChi | dr en ignores the child if it is unmanaged;
otherwise it performs the following:
« Marksthe child as unmanaged.
« If the child isrealized and the map_when _managed field is Tr ue, it is unmapped.

« If the parent is realized and if any children have become unmanaged, calls the change_managed
routine of the widgets parent.

Xt UnmanageChi | dr en does not destroy the child widgets. Removing widgets from a parent's
managed set is often atemporary banishment, and some time later the client may manage the children
again. To destroy widgets entirely, Xt Dest r oyW dget should be called instead; see the section
called “Exiting from an Application”.

To remove asingle child from its parent widget's managed set, use Xt UnmanageChi | d.
voi d Xt UnmanageChi |l d(chil d);

child Specifies the child. Must be of class RectObj or any
subclass thereof.

The Xt UnmanageChild function constructs a widget list of length 1 and cals
Xt UnmanageChi | dren.

These functions are low-level routines that are used by generic composite widget building routines.
In addition, composite widgets can provide widget-specific, high-level convenience procedures.

Bundling Changes to the Managed Set

A client may simultaneously unmanage and manage children with a single call to the Intrinsics. In
this same call the client may provide a callback procedure that can modify the geometries of one or
more children. The composite widget class defines whether this single client call results in separate
invocations of the change_managed method, one to unmanage and the other to manage, or in just a
singleinvocation.

56

Composite Widgets
and Their Children

To simultaneously remove from and add to the geometry-managed set of children of a composite
parent, use Xt ChangeManagedSet .

void Xt ChangeManagedSet (unmanage_chil dren, num unnanage_chil dren,
do_change_proc, client_data, manage_chil dren, num manage_children);

unmanage_children Specifies the list of widget children to
initially remove from the managed set.

num_unmanage_children Specifies the number of entries in the
unmanage_children list.

do_change proc Specifies a procedure to invoke between
unmanaging and managing the children,
or NULL.

client_data Specifies client data to be passed to the

do_change proc.

manage_children Specifies the list of widget children to
finally add to the managed set.

num_manage_children Specifies the number of entries in the
manage_children list.

The Xt ChangeManagedSet function performs the following:

» Returnsimmediately if num_unmanage children and num_manage_children are both O.

e Issues a warning and returns if the widgets specified in the manage children and the
unmanage_children lists do not all have the same parent or if that parent is not a subclass of
conposi t eW dget d ass.

* Returnsimmediately if the common parent is being destroyed.

o If do_change proc is not NULL and the parent's ConpositeC assExtension
allows change managed set field is Fal se, then Xt ChangeManagedSet performs the
following:

e Calls Xt UnmanageChi | dr en (unmanage_children, num_unmanage_children).

» Callsthedo_change proc.

e CallsXt ManageChi | dr en (manage_children, num_manage_children).

e Otherwise, the following is performed:
 For each child on the unmanage children list; if the child is already unmanaged it is ignored,

otherwise it is marked as unmanaged, and if it is realized and its map_when_managed field is
Tr ue, it is unmapped.

* If do_change procisnon-NULL, the procedure isinvoked.

« For each child onthe manage_children list; if the child isaready managed or isbeing destroyed,
it isignored; otherwise it is marked as managed.

« If the parent isrealized and after all children have been marked, the change managed method of
the parent isinvoked, and subsequently some of the newly managed children are made viewable
by caling Xt Real i zeW dget on each previously unmanaged child that is unrealized and
mapping each previously unmanaged child that has map_when_managed Tr ue.

If no Conposited assExtension record is found in the parent's composite class
part extension field with record type NULLQUARK and version greater than 1, and if
Xt I nher i t ChangeManaged was specified in the parent's class record during class initialization,
thevalueof theallows change managed_set field isinherited from the superclass. Thevalueinherited
fromconposi t eW dget O ass for theallows change managed set field isFal se.

Itisnot an error to include a child in both the unmanage_children and the manage_children lists. The
effect of such acal isthat the child remains managed following the call, but the do_change proc is
able to affect the child while it isin an unmanaged state.

57

Composite Widgets
and Their Children

Thedo_change procis of type Xt DoChangePr oc.

typedef void *XtDoChangeProc(conposite parent, unnange_chil dren,
num unmanage_chi | dren, nmanage_chi | dren, num nmanage_chi | dren,
client_data);

composite_parent Passes the composite parent whose
managed set is being altered.

unmanage_children Passes the list of children just removed
from the managed set.
num_unmanage_children Passes the number of entries in the

unmanage_children list.

manage_children Passes the list of children about to be
added to the managed set.
num_manage_children Passes the number of entries in the

manage_children list.

client_data Passes the client data passed to
Xt ChangeManagedSet .

The do_change_proc procedure is used by the caller of Xt ChangeManagedSet to make changes
to one or more children at the point when the managed set contains the fewest entries. These
changes may involve geometry requests, and in this case the caller of Xt ChangeManagedSet

may take advantage of the fact that the Intrinsics internally grant geometry requests made by
unmanaged children without invoking the parent's geometry manager. To achieve this advantage, if
thedo_change_proc procedure changes the geometry of achild or of adescendant of achild, then that
child should be included in the unmanage_children and manage_children lists.

Determining if a Widget Is Managed

To determine the managed state of a given child widget, use Xt | sManaged.
Bool ean Xt sManaged(w);
w Specifiesthewidget. Must be of class Object or any subclass thereof.

The Xt | sManaged function returns Tr ue if the specified widget is of class RectObj or any subclass
thereof and is managed, or Fal se otherwise.

Controlling When Widgets Get Mapped

A widget is normally mapped if it is managed. However, this behavior can be overridden by
setting the XtNmappedWhenManaged resource for the widget when it is created or by setting the
map_when_managed field to Fal se.

To change the value of a given widget's map when managed field, use
Xt Set MappedWhenManaged.

voi d Xt Set MappedwWhenManaged(w, map_when_nanaged) ;

w Specifies the widget. Must be of class
Core or any subclass thereof.

map_when_managed Specifies a Boolean value that indicates
the new value that is stored into the
widget's map_when _managed field.

58

Composite Widgets
and Their Children

If the widget is realized and managed, and if map when managed is True,
Xt Set MappedWhenManaged maps the window. If the widget is realized and managed, and
if map_when _managed is Fal se, it unmaps the window. Xt Set MappedWhenManaged is a
convenience function that isequivalent to (but slightly faster than) calling Xt Set Val ues and setting
the new value for the XtNmappedWhenManaged resource then mapping the widget as appropriate.
As an dternative to using Xt Set MappedWhenManaged to control mapping, a client may set
mapped_when_managed to Fal se and use Xt MapW dget and Xt UnmapW dget explicitly.

To map awidget explicitly, use Xt MapW dget .

voi d Xt MapW dget (w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.
To unmap awidget explicitly, use Xt UnmeapW dget .

voi d Xt UnmapW dget (w) ;

w Specifies the widget. Must be of class Core or any subclass thereof.

Constrained Composite Widgets

The Constraint widget classisasubclass of conposi t eW dget Cl ass. The nameisderived from
the fact that constraint widgets may manage the geometry of their children based on constraints
associated with each child. These constraints can be as simple as the maximum width and height the
parent will allow the child to occupy or can be as complicated as how other children should change
if this child is moved or resized. Constraint widgets let a parent define constraints as resources that
are supplied for their children. For example, if the Constraint parent defines the maximum sizes for
its children, these new size resources are retrieved for each child as if they were resources that were
defined by the child widget's class. Accordingly, constraint resources may beincluded in the argument
list or resource file just like any other resource for the child.

Constraint widgets have all the responsibilities of normal composite widgets and, in addition, must
process and act upon the constraint information associated with each of their children.

To make it easy for widgets and the Intrinsics to keep track of the constraints associated with a
child, every widget has a constraints field, which is the address of a parent-specific structure that
contains constraint information about the child. If a child's parent does not belong to a subclass of
const r ai nt W dget d ass, then the child's constraints field isNULL.

Subclasses of Constraint can add constraint data to the constraint record defined by their superclass.
To alow this, widget writers should define the constraint records in their private .h file by using the
same conventions as used for widget records. For example, a widget class that needs to maintain a
maximum width and height for each child might define its constraint record as follows:

typedef struct {
Di nensi on nmax_wi dt h, max_hei ght;
} MaxConstraintPart;
typedef struct {
MaxConstrai nt Part max;
} MaxConstrai nt Record, *MaxConstraint;

A subclass of thiswidget classthat aso needs to maintain a minimum size would define its constraint

record as follows:

typedef struct {
Di nmension mn_w dth, mn_height;

59

Composite Widgets
and Their Children

} M nConstraintPart;
typedef struct {
MaxConstrai nt Part max;
M nConstrai ntPart mn;
} MaxM nConstrai nt Record, *MaxM nConstr ai nt;

Constraints are allocated, initialized, deallocated, and otherwise maintained insofar as possible by
the Intrinsics. The Constraint class record part has several entries that facilitate this. All entries in
Const rai nt Cl assPart arefieldsand proceduresthat are defined and implemented by the parent,
but they are called whenever actions are performed on the parent's children.

The Xt Cr eat eW dget function usesthe constraint_sizefield in the parent's class record to allocate
a constraint record when a child is created. Xt Cr eat eW dget also uses the constraint resources
to fill in resource fields in the constraint record associated with a child. It then calls the constraint
initialize procedure so that the parent can compute constraint fields that are derived from constraint
resources and can possibly move or resize the child to conform to the given constraints.

When the Xt Get Val ues and Xt Set Val ues functions are executed on a child, they use
the constraint resources to get the values or set the values of constraints associated with that
child. Xt Set Val ues then calls the constraint set values procedures so that the parent can
recompute derived constraint fields and move or resize the child as appropriate. If a Constraint
widget class or any of its superclasses have declared a Const r ai nt Cl assExt ensi on record
in the Constrai nt Cl assPart extension fields with a record type of NULLQUARK and
the get values hook field in the extension record is non-NULL, Xt Get Val ues cals the
get_values_hook procedure(s) to allow the parent to return derived constraint fields.

The Xt Dest r oyW dget function calls the constraint destroy procedure to deallocate any dynamic
storage associated with aconstraint record. The constraint record itself must not be deall ocated by the
constraint destroy procedure; Xt Dest r oyW dget doesthis automatically.

60

Chapter 4. Shell Widgets

Shell widgets hold an application's top-level widgets to allow them to communicate with the window
manager and session manager. Shells have been designed to be as nearly invisible as possible. Clients
have to create them, but they should never have to worry about their sizes.

If ashell widget is resized from the outside (typically by a window manager), the shell widget also
resizes its managed child widget automatically. Similarly, if the shell's child widget needs to change
size, it can make ageometry request to the shell, and the shell negotiates the size change with the outer
environment. Clients should never attempt to change the size of their shells directly.

The five types of public shellsare:

OverrideShell Used for shell windows that completely bypass the window
manager (for example, pop-up menu shells).

TransientShell Used for shell windows that have the
WM _TRANSIENT_FOR property set. The effect of this
property is dependent upon the window manager being used.

TopLevel Shell Used for normal top-level windows (for example, any
additional top-level widgets an application needs).

ApplicationShell Formerly used for the single main top-level window that the
window manager identifies as an application instance and
made obsolete by SessionShell.

SessionShell Used for the single main top-level window that the window

manager identifies as an application instance and that
interacts with the session manager.

Shell Widget Definitions

Widgets negotiate their size and position with their parent widget, that is, the widget that directly
contains them. Widgets at the top of the hierarchy do not have parent widgets. Instead, they must deal
with the outside world. To provide for this, each top-level widget is encapsulated in a special widget,
called a shell widget.

Shell widgets, whose class is a subclass of the Composite class, encapsulate other widgets and can
allow awidget to avoid the geometry clipping imposed by the parent-child window relationship. They
also can provide alayer of communication with the window manager.

The eight different types of shells are:

Shell The base class for shell widgets; provides the fields needed
for al types of shells. Shell is a direct subclass of
compositeWidgetClass.

OverrideShell A subclass of Shell; used for shell windows that completely
bypass the window manager.

WM Shell A subclass of Shell; contains fields needed by the common
window manager protocol.

VendorShell A subclass of WMShell; contains fields used by vendor-
specific window managers.

61

Shell Widgets

TransientShell A subclass of VendorShell; used for shell windowsthat desire
theWM_TRANSIENT_FOR property.

TopLevel Shell A subclass of VendorShell; used for normal top-level
windows.

ApplicationShell A subclass of TopLevel Shell; may be used for an application's
additional root windows.

SessionShell A subclass of ApplicationShell; used for an application'smain
root window.

Note that the classes Shell, WM Shell, and VendorShell are internal and should not be instantiated or
subclassed. Only OverrrideShell, TransientShell, TopLevel Shell, ApplicationShell, and SessionShell
are intended for public use.

ShellClassPart Definitions

Only the Shell class has additional class fields, which are all contained in the
Shel | O assExt ensi onRec. None of the other Shell classes have any additional classfields:

typedef struct {
Xt Poi nt er extension;
} Shell d assPart, OverrideShell d assPart,
WvBhel | Cl assPart, Vendor Shel | C assPart, Transient Shell d assPart,
TopLevel Shel | Cl assPart, ApplicationShell d assPart, SessionShell d assPart;

The full Shell class record definitions are:

typedef struct _Shell d assRec {

Cor eCl assPart core_cl ass;
Conposi t eC assPart conposi te_cl ass;
Shel | G assPart shel | _cl ass;

} Shel | A assRec;

t ypedef struct { See the section called “C ass Extension Records”
Xt Poi nt er next extensi on;
Xr mQuar k record_type;
| ong versi on;
Car di nal record_si ze;

Xt Geonret ryHandl er root _geonetry_ nanager; See bel ow
} Shel | O assExt ensi onRec, *Shel | d assExt ensi on;

typedef struct _OverrideShell d assRec {

Cor eCl assPart core_cl ass;
Conposi t eC assPart conposi te_cl ass;
Shel | Cl assPart shel | _cl ass;

OverrideShel | d assPart override _shell class;
} OverrideShel | O assRec;

typedef struct Wwshel |l d assRec {
Cor e assPart core_cl ass;
Conposi t eC assPart conposite_cl ass;

62

Shell Widgets

} WBhel

Shel | O assPart
WVShel | Cl assPart
| d assRec;

shel | _cl ass;
wm shel | _cl ass;

typedef struct _Vendor Shell Cl assRec {

Cor e assPart
Conposi t eC assPart
Shel | Cl assPart
WvBhel | C assPart
Vendor Shel | Cl assPart

} Vendor Shel | O assRec;

typedef struct _Transient Shell C

} Transi

t ypedef

Cor e assPart
Conposi t eC assPart
Shel | Cl assPart
WvBhel | O assPart
Vendor Shel | Cl assPart

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | _cl ass;

assRec {

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | _cl ass;

Transi ent Shel | Gl assPart transi ent_shell _cl ass;

ent Shel | C assRec;

struct _ToplLevel Shel | O assRec {

Cor e assPart
Conposit eCl assPart
Shel | Cl assPart
WvBhel | O assPart
Vendor Shel | Cl assPart
TopLevel Shel | Cl assPart

} TopLevel Shel | O assRec;

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | _cl ass;
top_l evel _shel |l _cl ass;

typedef struct _ApplicationShell d assRec {

Cor eCl assPart
Conposi t e assPart
Shel | Cl assPart
WvBhel | Cl assPart
Vendor Shel | C assPart
TopLevel Shel | O assPart

ApplicationShel | O assPart application_shell cl ass;

} ApplicationShel | d assRec;

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | cl ass;
top_l evel shell cl ass;

typedef struct _SessionShell d assRec {

Cor eCl assPart
Conposi t eCl assPart
Shel | Cl assPart
VWvBhel | Cl assPart
Vendor Shel | assPart
TopLevel Shel | Cl assPart

ApplicationShel |l C assPart application_shell cl ass;

Sessi onShel | d assPart

} SessionShel | O assRec;

The single occurrences of the class records and pointers for creating instances of shells are:

core_cl ass;

conposi te_cl ass;
shel | _cl ass;

wm shel | _cl ass;
vendor _shel | cl ass;
top_l evel shell _cl ass;

session_shel | _cl ass;

63

Shell Widgets

extern Shel |l d assRec shel | O assRec;

extern OverrideShel |l C assRec overri deShel | d assRec;
ext ern WvBhel | Cl assRec wnShel | O assRec;
extern Vendor Shel | d assRec vendor Shel | C assRec;

extern Transi ent Shel | Cl assRec transi ent Shel | Cl assRec;
extern TopLevel Shel | Cl assRec t opLevel Shel | O assRec;
extern ApplicationShell Cl assRec applicationShel |l d assRec;

extern SessionShel | Cl assRec sessi onShel | A assRec;

extern Wdget d ass shel | Wdget d ass;

extern Wdget d ass overri deShel | Wdget d ass;
extern Wdget d ass wrShel | W dget O ass;

extern Wdget d ass vendor Shel | W dget d ass;
extern Wdget d ass transi ent Shel | W dget O ass;
extern Wdget d ass t opLevel Shel | W dget d ass;
extern Wdget d ass appl i cati onShel | Wdget d ass;
extern Wdget d ass sessi onShel | W dget d ass;

The following opague types and opaque variables are defined for generic operations on widgets whose
classisasubclass of Shell.

Types Variables

ShellWidget shellWidgetClass
OverrideShellWidget overrideShellWidgetClass
WM ShellWidget wmsShellWidgetClass
Vendor ShellWidget vendor ShellWidgetClass
TransientShellWidget transientShellWidgetClass
TopL evelShellWidget topL evelShellWidgetClass
ApplicationShellWidget applicationShellWidgetClass
SessionShellWidget sessionShellWidgetClass

ShellWidgetClass
OverrideShellWidgetClass
WM ShellWidgetClass
Vendor ShellWidgetClass
TransientShellWidgetClass
TopL evel ShellWidgetClass
ApplicationShellWidgetClass
SessionShellWidgetClass

The declarations for al Intrinsics-defined shells except VendorShell appear in Shel | . h and
Shel | P. h. VendorShell has separate public and private .h files which are included by Shel | . h
and Shel | P. h.

Shel | . h usesincomplete structure definitions to ensure that the compiler catches attemptsto access
private datain any of the Shell instance or class data structures.

The symbolic constant for the Shell Cl assExtension version identifier is
Xt Shel | Ext ensi onVer si on (see the section called “Class Extension Records’).

The root_geometry _manager procedure acts as the parent geometry manager for geometry requests
made by shell widgets. When a shell widget calls either Xt MakeGeonet r yRequest or
Xt MakeResi zeRequest, the root_geometry_manager procedure is invoked to negotiate the
new geometry with the window manager. If the window manager permits the new geometry,

64

Shell Widgets

the root_geometry _manager procedure should return Xt Geonet r yYes; if the window manager
denies the geometry request or does not change the window geometry within some timeout interval
(equal to wm timeout in the case of WMShells), the root_geometry _manager procedure should
return Xt Geonet r yNo. If the window manager makes some alternative geometry change, the
root_geometry _manager procedure may return either Xt Georret r yNo and handle the new geometry
as aresize or Xt Geonet r yAl nost in anticipation that the shell will accept the compromise. If
the compromise is not accepted, the new size must then be handled as a resize. Subclasses of Shell
that wish to provide their own root_geometry _manager procedures are strongly encouraged to use
enveloping to invoke their superclass's root_geometry _manager procedure under most situations, as
the window manager interaction may be very complex.

If no Shel | Gl assPart extension record is declared with record_type equal to NULL QUARK,
then Xt | nher i t Root Geonet r yManager isassumed.

ShellPart Definition

The various shell widgets have the following additional instancefields defined in their widget records:

typedef struct {

String geonetry;
Xt Cr eat ePopupChi | dProc create_popup_chil d_proc;
Xt GrabKi nd grab_ki nd;
Bool ean spring_| oaded;
Bool ean popped_up;
Bool ean al I ow_shel | _resi ze;
Bool ean client_specified,
Bool ean save_under;
Bool ean override_redirect;
Xt Cal | backLi st popup_cal | back;
Xt Cal | backLi st popdown_cal | back;
Vi sual * vi sual ;

} Shell Part;

t ypedef struct {

i nt enpty;
} OverrideShell Part;

typedef struct {

String title;
i nt wm ti meout;
Bool ean wait _for_wm
Bool ean transient;
Bool ean ur gency;
W dget client | eader;
String wi ndow rol e;
struct A dXSizeH nts {
| ong fl ags;
i nt X, Y,
i nt wi dt h, hei ght;
i nt m n_wi dth, mn_height;
i nt max_wi dt h, max_hei ght;
i nt wi dt h_i nc, height _inc;
struct {
i nt X;
i nt y;

65

Shell Widgets

} m n_aspect,
} size_hints;
XWVHI nt s
i nt
At om
} WwBhel | Part ;

typedef struct {

i nt vendor _speci fic;

} Vendor Shel | Part;

typedef struct {
W dget transient _for
} Transient Shel | Part;
typedef struct {
String icon_narne;
Bool ean i coni c;

max_aspect ;

wm _hi nt s;
base_wi dt h, base_hei ght,
title_encoding;

At om i con_nane_encodi ng;

} TopLevel Shel | Part;

typedef struct {
char * cl ass;

XrnCl ass Xrmcl ass;

i nt argc;
char ** argv;
} ApplicationShellPart;

typedef struct {

SncConn connection
String sessi on_i d;
String * restart_conmmand;
String * cl one_command;
String * di scard_command,;
String * resi gn_comand;
String * shut down_command;
String * envi ronnent ;
String current _dir;
String pr ogr am pat h;
unsi gned char restart_style;
Bool ean j oi n_sessi on;

Xt Cal | backLi st save_cal | backs;

Xt Cal | backLi st interact_call backs;

Xt Cal | backLi st cancel _cal |l backs;

Xt Cal | backLi st save_conpl ete_cal | backs;
Xt Cal | backLi st die_call backs;

Xt Cal | backLi st error_call backs;

} SessionShel | Part;

The full shell widget instance record definitions are:

typedef struct {
Cor ePar t core;

Conposi t ePart conposite;

Shel | Part shel |

W n_gravity;

66

Shell Widgets

} Shell Rec, *Shel | Wdget;

typedef struct {

Cor ePar t core;
Conposi t ePart conposite;
Shel | Part shel | ;

OverrideShel | Part overri de;
} OverrideShel |l Rec, *COverrideShel | Wdget;

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
VWvBhel | Part wim

} Wwbhel | Rec, *Wwbhel | W dget ;

typedef struct {

Cor ePart core;
Conposi t ePart composite;
Shel | Part shel | ;
WvBhel | Part wim

Vendor Shel | Part vendor;
} Vendor Shel | Rec, *Vendor Shel | W dget ;

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
WvBhel | Part wim

Vendor Shel | Part vendor;
Tr ansi ent Shel | Part transi ent;
} Transi ent Shel | Rec, *Transi ent Shel | Wdget;

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
VWvBhel | Part wim

Vendor Shel | Part vendor ;
TopLevel Shel | Part t opLevel ;

} TopLevel Shel | Rec, *TopLevel Shel | Wdget;

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
WvBhel | Part wim

Vendor Shel | Part vendor ;
TopLevel Shel | Part t opLevel ;
Appl i cationShel | Part application;

} ApplicationShell Rec, *ApplicationShell W dget;

67

Shell Widgets

typedef struct {

Cor ePart core;
Conposi t ePart conposite;
Shel | Part shel | ;
VWvBhel | Part wim

Vendor Shel | Part vendor;
TopLevel Shel | Part topLevel ;
Appl i cationShel | Part application;
Sessi onShel | Part sessi on;

} SessionShel | Rec, *SessionShel | W dget ;

Shell Resources

The resource names, classes, and representation types specified in the shel | C assRec resource

list are:

Name Class Representation
XtNallowShellResize XtCAllowShellResize XtRBoolean
XtNcreatePopupChildProc XtCCreatePopupChildProc XtRFunction
XtNgeometry XtCGeometry XtRString
XtNoverrideRedirect XtCOverrideRedirect XtRBoolean
XtNpopdownCallback XtCCallback XtRCallback
XtNpopupCallback XtCCallback XtRCallback
XtNsaveUnder XtCSaveUnder XtRBoolean
XtNvisual XtCVisual XtRVisual

OverrideShell declares no additional resources beyond those defined by Shell.

The resource names, classes, and representation types specified in thewnthel | Cl assRec resource
list are:

68

Shell Widgets

Name Class Representation
XtNbaseHeight XtCBaseHeight XtRInt
XtNbaseWidth XtCBaseWidth XtRiInt
XtNclientL eader XtCClientL eader XtRWidget
XtNheightlnc XtCHeightinc XtRInt
XtNiconMask XtClconMask XtRBitmap
XtNiconPixmap XtClconPixmap XtRBitmap
XtNiconWindow XtClconWindow XtRWindow
XtNiconX XtClconX XtRiInt
XtNiconY XtClconY XtRInt
XtNinitial State XtClnitia State XtRInitial State
XtNinput XtClnput XtRBool
XtNmaxAspectX XtCMaxAspectX XtRInt
XtNmaxAspectY XtCMaxAspectY XtRInt
XtNmaxHeight XtCMaxHeight XtRInt
XtNmaxWidth XtCMaxWidth XtRInt
XtNminAspectX XtCMinAspectX XtRInt
XtNminAspectY XtCMinAspectY XtRInt
XtNminHeight XtCMinHeight XtRInt
XtNminWidth XtCMinWidth XtRInt
XtNtitle XtCTitle XtRString
XtNtitleEncoding XtCTitleEncoding XtRAtom
XtNtransient XtCTransient XtRBoolean
XtNwaitforwm, XtCWaitforwm, XtRBoolean
XtNwaitForwm XtCWaitForwm

XtNwidthinc XtCWidthinc XtRInt
XtNwindowRole XtCWindowRole XtRString
XtNwinGravity XtCWinGravity XtRGravity
XtNwindowGroup XtCWindowGroup XtRWindow
XtNwmTimeout XtCWmTimeout XtRInt
XtNurgency XtCUrgency XtRBoolean

The classresource list for VendorShell isimplementation-defined.

The resource names, classes, and representation types that are specified in the
t ransi ent Shel | Cl assRec resource list are:

Name Class Representation
XtNtransientFor XtCTransientFor XtRWidget

The resource names, classes, and representation types that are specified in the

t opLevel Shel | A assRec resourcelist are:

Name

Class

Representation

XtNiconName
XtNiconNameEncoding
XtNiconic

XtClconName
XtClconNameEncoding
XtClconic

XtRString
XtRAtom
XtRBoolean

69

Shell Widgets

The resource names, classes, and representation types that are specified the
appl i cati onShel | O assRec resourcelist are;

Name Class Representation

XtNargc XtCArgc XtRInt

XtNargv XtCArgv XtRStringArray

The resource names, classes, and representation that are specified the

sessi onShel | O assRec resourcelist are;

Name Class Representation
XtNcancel Callback XtCCallback XtRCallback
XtNcloneCommand XtCCloneCommand XtRCommandArgArray
XtNconnection XtCConnection XtRSmcConn
XtNcurrentDirectory XtCCurrentDirectory XtRDirectoryString
XtNdieCallback XtCCallback XtRCallback
XtNdiscardCommand XtCDiscardCommand XtRCommandArgArray
XtNenvironment XtCEnvironment XtREnvironmentArray
XtNerrorCallback XtCCallback XtRCallback
XtNinteractCallback XtCCallback XtRCallback
XtNjoinSession XtCJoinSession XtRBoolean
XtNprogramPath XtCProgramPath XtRString
XtNresignCommand XtCResignCommand XtRCommandArgArray
XtNrestartCommand XtCRestartCommand XtRCommandArgArray
XtNrestartStyle XtCRestartStyle XtRRestartStyle
XtNsaveCallback XtCCallback XtRCallback
XtNsaveCompl eteCallback XtCCallback XtRCallback
XtNsessionlD XtCSessionlD XtRString
XtNshutdownCommand XtCShutdownCommand XtRCommandArgArray

ShellPart Default Values

The default valuesfor fields common to all classes of public shells (filled in by the Shell resourcelists
and the Shell initialize procedures) are;

70

Shell Widgets

Field Default Value

geometry NULL

create_popup_child_proc NULL

grab_kind (none)

spring_loaded (none)

popped_up Fal se

allow_shell_resize Fal se

client_specified (internal)

save_under Tr ue for OverrideShell and TransientShell,
False otherwise

override_redirect Tr ue for OverrideShell, Fal se otherwise

popup_callback NULL

popdown_callback NULL

visual CopyFr onPar ent

The geometry field specifies the size and position and is usually given only on a command line or in
a defaults file. If the geometry field is non-NULL when a widget of class WM Shell is redlized, the
geometry specification is parsed using X\WGeonet ry with a default geometry string constructed
from the values of X, y, width, height, width_inc, and height_inc and the size and position flags in the
window manager size hints are set. If the geometry specifies an x or y position, then USPosi ti on
is set. If the geometry specifies a width or height, then USSi ze is set. Any fields in the geometry
specification override the corresponding values in the Core X, y, width, and height fields. If geometry
isNULL or contains only a partial specification, then the Core x, y, width, and height fields are used
and PPosi ti on and PSi ze are set as appropriate. The geometry string is not copied by any of the
Intrinsics Shell classes; a client specifying the string in an arglist or varargs list must ensure that the
value remains valid until the shell widget is realized. For further information on the geometry string,
see Parsing the Window Geometry in Xlib — C Language X Interface.

Thecreate popup_child proc procedureiscalled by the Xt Popup procedureand may remain NULL.
Thegrab_kind, spring_loaded, and popped_up fields maintain widget state information as described
under Xt Popup, Xt MenuPopup, Xt Popdown, and Xt MenuPopdown. The allow_shell resize
field controls whether the widget contained by the shell is alowed to try to resize itself.
If allow_shell resize is Fal se, any geometry requests made by the child will aways return
Xt Geonet r yNo without interacting with the window manager. Setting save_under Tr ue instructs
the server to attempt to save the contents of windows obscured by the shell when it is mapped
and to restore those contents automatically when the shell is unmapped. It is useful for pop-up
menus. Setting override redirect Tr ue determines whether the window manager can intercede when
the shell window is mapped. For further information on override redirect, see Window Attributes
in Xlib — C Language X Interface and Pop-up Windows and Redirection of Operations in the
Inter-Client Communication Conventions Manual. The pop-up and pop-down callbacks are called
during Xt Popup and Xt Popdown. The default value of the visual resource is the symbolic value
CopyFr onPar ent . The Intrinsics do not need to query the parent's visual type when the default
value is used; if a client using Xt Get Val ues to examine the visua type receives the value
CopyFr onPar ent , it must then use XGet W ndowAt t r i but es if it needsthe actual visual type.

The default values for Shell fieldsin WM Shell and its subclasses are:

Field Default Value

title Icon name, if specified, otherwise the
application's name

wm_timeout Five seconds, in units of milliseconds

wait_for_wm True

71

Shell Widgets

Field Default Value

transient Tr ue for TransientShell, Fal se otherwise
urgency Fal se

client_leader NULL

window_role NULL

min_width Xt Unspeci fi edShel I | nt
min_height Xt Unspeci fi edShel | I nt
max_width Xt Unspeci fi edShel I I nt
max_height Xt Unspeci fi edShel I | nt
width_inc Xt Unspeci fi edShel | I nt
height_inc Xt Unspeci fi edShel I I nt
min_aspect X Xt Unspeci fi edShel I | nt
min_aspect_y Xt Unspeci fi edShel | I nt
max_aspect_x Xt Unspeci fi edShel I I nt
max_aspect_y Xt Unspeci fi edShel I | nt
input Fal se

initial_state Normal

icon_pixmap None

icon_window None

icon_x Xt Unspeci fi edShel I I nt
icon_y Xt Unspeci fi edShel I | nt
icon_mask None

window_group Xt Unspeci fi edW ndow
base width Xt Unspeci fi edShel I | nt
base height Xt Unspeci fi edShel I | nt
win_gravity Xt Unspeci fi edShel I I nt
title_encoding See text

The title and title_encoding fields are stored in the WM_NAME property on the shell's window
by the WMShell realize procedure. If the title_encoding field is None, the title string is assumed
to be in the encoding of the current locale and the encoding of the WM_NAME property is set to
XSt dl CCText St yl e. If alanguage procedure has not been set the default value of title_encoding is
XA_STRING, otherwise the default valueis None. Thewm_timeout field specifies, in milliseconds,
the amount of time a shell isto wait for confirmation of a geometry request to the window manager.
If none comes back within that time, the shell assumes the window manager is not functioning
properly and sets wait_for_wmto Fal se (later events may reset this value). When wait_for_wm is
Fal se, the shell does not wait for a response, but relies on asynchronous natification. If transient
isTrue, the WM_TRANSIENT_FOR property will be stored on the shell window with avalue as
specified below. The interpretation of this property is specific to the window manager under which
the application is run; see the Inter-Client Communication Conventions Manual for more details.

Therealize and set_values procedures of WM Shell storethe WM _CLIENT_L EADER property on
the shell window. When client_|leader isnot NULL and the client leader widget isrealized, the property
will be created with the value of the window of the client leader widget. When client_leader isSNULL
and the shell widget has a NULL parent, the widget's window is used as the value of the property.
When client_|leader is NULL and the shell widget has a non-NULL parent, a search is made for the
closest shell ancestor with anon-NULL client_leader, and if none is found the shell ancestor with a
NULL parent is the result. If the resulting widget is realized, the property is created with the value
of the widget's window.

72

Shell Widgets

When the value of window role is not NULL, the realize and set_values procedures store the
WM_WINDOW _ROLE property on the shell's window with the value of the resource.

All other resources specify fields in the window manager hints and the window manager size hints.
Therealize and set_values procedures of WM Shell set the corresponding flag bitsin the hintsif any of
the fields contain nondefault values. In addition, if aflag bit is set that refers to afield with the value
Xt Unspeci fi edShel I | nt, thevalue of thefield is modified as follows:

Field Replacement

base width, base_height 0

width_inc, height_inc 1

max_width, max_height 32767

min_width, min_height 1

min_aspect X, min_aspect_y -1

max_aspect_X, max_aspect_y -1

icon_x, icon_y -1

win_gravity Valuereturned by X\WMGeonet ry if called, else

Nort hWest Gravity

If the shell widget hasanon-NULL parent, thentherealizeand set_values proceduresreplacethevalue
Xt Unspeci f i edW ndowin the window_group field with the window id of the root widget of the
widget tree if the root widget is realized. The symbolic constant Xt Unspeci fi edW ndowG oup
may be used to indicate that the window group hint flag bit is not to be set. If transient
is True, the shell's class is not a subclass of TransientShell, and window group is not
Xt Unspeci fi edW ndowG oup, the WMShell realize and set_values procedures then store the
WM _TRANSIENT_FOR property with the value of window_group.

Transient shells have the following additional resource:

Field Replacement
transient_for NULL

Therealizeand set_values procedures of TransientShell storethe WM _TRANSIENT_FOR property
on the shell window if transient is Tr ue. If transient_for is non-NULL and the widget specified
by transient_for is realized, then its window is used as the value of the WM_TRANSIENT_FOR
property; otherwise, the value of window_group is used.

TopLevel shells have the the following additional resources:

Field Default Value
icon_name Shell widget's name
iconic False
icon_name_encoding Seetext

The icon_name and icon_name_encoding fields are stored in the WM _|CON_NAME property on
the shell'swindow by the TopL evel Shell realize procedure. If theicon_name_encoding fieldisNone,
the icon_name string is assumed to be in the encoding of the current locale and the encoding of the
WM _ICON_NAME property isset to XSt dl CCText St yl e. If alanguage procedure has not been
set, the default value of icon_name_encoding is XA_STRING, otherwise the default valueis None.
Theiconic field may be used by a client to request that the window manager iconify or deiconify the
shell; the TopLevelShell set_values procedure will send the appropriate WM _CHANGE_STATE
message (as specified by the Inter-Client Communication Conventions Manual) if this resource is
changed from Fal se to Tr ue and will call Xt Popup specifying grab _kind as Xt G abNone if

73

Shell Widgets

iconic is changed from Tr ue to Fal se. The XtNiconic resource is also an alternative way to set
the XtNinitial State resource to indicate that a shell should be initially displayed as an icon; the
TopLevelShell initialize procedure will set initial_stateto | coni ¢St at e if iconicisTr ue.

Application shells have the following additional resources:

Field Default Value
argc 0
argv NULL

Theargc and argv fieldsare used to initialize the standard property WM _COMM AND. Seethe Inter-
Client Communication Conventions Manual for more information.

The default values for the SessionShell instance fields, which arefilled in from the resource lists and
by the initialize procedure, are

Field Default Value
cancel_callbacks NULL
clone_command Seetext
connection NULL
current_dir NULL
die_callbacks NULL
discard_command NULL
environment NULL
error_callbacks NULL
interact_callbacks NULL
join_session True
program_path NULL
resign_command NULL
restart_command See text
restart_style SmRestartl fRunning
save callbacks NULL
save_complete callbacks NULL

on id NULL
shutdown_command NULL

The connection field contains the session connection object or NULL if a session connection is not
being managed by this widget.

The session _id is an identification assigned to the session participant by the session manager. The
session_id will be passed to the session manager as the client identifier of the previous session. When
a connection is established with the session manager, the client id assigned by the session manager
is stored in the session_id field. When not NULL, the session _id of the Session shell widget that is
at the root of the widget tree of the client leader widget will be used to create the SM_CLIENT_ID
property on the client leader's window.

If join_sessionisFal se, thewidget will not attempt to establish aconnection to the session manager
at shell creation time. See the section called “Joining a Session” and the section called “Resigning
from a Session” for more information on the functionality of this resource.

The restart_command, clone_command, discard command, resign_command, shutdown_command,
environment, current_dir, program_path, and restart_style fields contain standard session properties.

74

Shell Widgets

When a session connection is established or newly managed by the shell, the shell initialize and
set_values methods check the values of the restart_ command, clone_command, and program path
resources. At that time, if restart_ command is NULL, the value of the argv resource will be copied
to restart_command. Whether or not restart_ command was NULL, if “-xtsessionID” “<session id>"
does not already appear in the restart_ command, it will be added by the initialize and set_values
methods at the beginning of the command arguments; if the “-xtsessionID” argument already appears
with anincorrect session id in the following argument, that argument will be replaced with the current
session id.

After this, the shell initialize and set_values procedures check the clone_command. If clone_command
is NULL, restart command will be copied to clone_ command, except the “-xtsessionID” and
following argument will not be copied.

Finally, the shell initialize and set_values procedures check the program path. If program path is
NULL, thefirst element of restart_command is copied to program_path.

The possible values of restart style are SmRest art | f Runni ng, SnRest art Anyway,
SnRest art | mredi at el y, and SnRest art Never . A resource converter is registered for this
resource; for the strings that it recognizes, see the section called “ Predefined Resource Converters’.

Theresourcetype EnvironmentArray isaNULL-terminated array of pointersto strings; each string has
the format “name=value’. The "=' character may not appear in the name, and the string is terminated
by anull character.

Session Participation

Applications can participate in a user's session, exchanging messages with the session manager as
described in the X Session Management Protocol and the X Session Management Library.

When a widget of sessi onShel | W dget Cl ass or a subclass is created, the widget provides
support for the application as a session participant and continues to provide support until the widget
is destroyed.

Joining a Session

When a Session shell is created, if connection is NULL, and if join_session is Tr ue, and if argv
or restart command is not NULL, and if in POSIX environments the SESSION_MANAGER
environment variable is defined, the shell will attempt to establish a new connection with the session
manager.

To transfer management of an existing session connection from an application to the shell at widget
creation time, pass the existing session connection ID as the connection resource value when creating
the Session shell, and if the other creation-time conditions on session participation are met, the widget
will maintain the connection with the session manager. The application must ensure that only one
Session shell manages the connection.

In the Session shell set values procedure, if join_session changes from Fal se to True and
connection is NULL and when in POSIX environments the SESSION_MANAGER environment
variable is defined, the shell will attempt to open a connection to the session manager. If connection
changes from NULL to non-NULL, the Session shell will take over management of that session
connection and will set join_session to Tr ue. If join_session changes from Fal se to Tr ue and
connection isnot NULL, the Session shell will take over management of the session connection.

When asuccessful connection has been established, connection contains the session connection ID for
the session parti cipant. When the shell beginsto managethe connection, it will call Xt AppAddI nput
to register the handler which watches for protocol messages from the session manager. When the
attempt to connect fails, awarning message is issued and connection is set to NULL.

75

Shell Widgets

While the connection is being managed, if a SaveYoursel f, SaveYour sel f Phase2,
I nt eract, Shut downCancel | ed, SaveConpl et e, or Di e message is received from the
session manager, the Session shell will call out to application callback procedures registered on
the respective callback list of the Session shell and will send SaveYour sel f Phase2Request ,
I nt er act Request, | nteractDone, SaveYoursel f Done, and Connecti onCl osed
messages as appropriate. Initially, al of the client's session properties are undefined. When any
of the session property resource values are defined or change, the Session shell initialize and
set_values procedures will update the client's session property value by a Set Properti es or a
Del et eProperti es message, as appropriate. The session ProcessID and UserlD properties are
always set by the shell when it is possible to determine the value of these properties.

Saving Application State

The session manager instigates an application checkpoint by sending a SaveYour sel f request.
Applications are responsible for saving their state in response to the request.

When the SaveYour sel f request arrives, the procedures registered on the Session shell's save
callback list are called. If the application does not register any save callback procedures on the save
callback list, the shell will report to the session manager that the application failed to save its state.
Each procedure on the save callback list receives atoken in the call_data parameter.

The checkpoint token in the call_data parameter is of type Xt Checkpoi nt Token.

typedef struct {
i nt save_type;
i nt i nteract_style;
Bool ean shut down;
Bool ean fast;
Bool ean cancel _shut down

i nt phase;

i nt i nteract _dial og_type; /* return */
Bool ean request_cancel ; [* return */
Bool ean request _next _phase; /* return */
Bool ean save_success; /* return */

} Xt Checkpoi nt TokenRec, *Xt Checkpoi nt Token;

The save type, interact_style, shutdown, and fast fields of the token contain the parameters
of the SaveYoursel f message. The possible values of save type are Snavelocal ,
SnBaved obal , and SnBaveBot h; these indicate the type of information to be saved. The
possible values of interact_style are Sim nt er act St yl eNone, Sml nt eract St yl eErrors,
and Sm nt er act St yl eAny; theseindicate whether user interaction would be permitted and, if so,
what kind of interaction. If shutdownisTr ue, the checkpoint isbeing performed in preparation for the
end of the session. If fast is Tr ue, the client should perform the checkpoint as quickly as possible. If
cancel_shutdownisTr ue, aShut downCancel | ed message has been received for the current save
operation. (Seethe section called “ Resigning from a Session”.) The phase is used by manager clients,
such as awindow manager, to distinguish between the first and second phase of a save operation. The
phase will be either 1 or 2. The remaining fields in the checkpoint token structure are provided for
the application to communicate with the shell.

Upon entry to the first application save callback procedure, the return fields in the token have
the following initial values: interact_dialog_typeis SnDi al ogNor nmal ; request_cancdl isFal se;
request_next_phaseis Fal se; and save_successis Tr ue. When atoken is returned with any of the
four return fields containing a noninitial value, and when the field is applicable, subsequent tokens
passed to the application during the current save operation will always contain the noninitial value.

The purpose of the token's save _success field is to indicate the outcome of the entire operation to
the session manager and ultimately, to the user. Returning Fal se indicates some portion of the
application state could not be successfully saved. If any tokenisreturned to the shell with save _success

76

Shell Widgets

Fal se, tokens subsequently received by the application for the current save operation will show
save successasFal se. Whentheshell sendsthefinal statusof the checkpoint to the session manager,
it will indicate failure to save application state if any token was returned with save _success Fal se.

Session participants that manage and save the state of other clients should structure their save
or interact callbacks to set request_next_phase to Tr ue when phase is 1, which will cause the
shell to send the SaveYour sel f Phase2Request when the first phase is complete. When the
SaveYour sel f Phase2 messageisreceived, the shell will invoke the save callbacks a second time
with phase equal to 2. Manager clients should save the state of other clients when the callbacks are
invoked the second time and phase equal to 2.

The application may request additional tokens while a checkpoint is under way, and these additional
tokens must be returned by an explicit call.

To request an additional token for a save callback response that has a deferred outcome, use
Xt Sessi onCet Token.

Xt Checkpoi nt Token Xt Sessi onGet Token(w dget);

widget Specifies the Session shell widget which manages
session participation.

The Xt Sessi onGet Token functionwill return NULL if no checkpoint operationiscurrently under
way.

To indicate the completion of checkpoint processing including user interaction, the application
must signal the Session shell by returning all tokens. (See the section called “Interacting with the
User during a Checkpoint” and the section called “Completing a Save’). To return a token, use
Xt Sessi onRet ur nToken.

voi d Xt Sessi onRet ur nToken(t oken);

token Specifies a token that was received as the call_data by a
procedure on the interact callback list or a token that was
received by acall to Xt Sessi onGet Token.

Tokens passed as call_data to save callbacks areimplicitly returned when the save callback procedure
returns. A save callback procedure should not call Xt Sessi onRet ur nToken on the token passed
inits call_data.

Requesting Interaction

When thetokeninteract_style allows user interaction, the application may interact with the user during
the checkpoint, but must wait for permission to interact. Applications request permission to interact
with the user during the checkpointing operation by registering a procedure on the Session shell's
interact callback list. When all save callback procedures have returned, and each time a token that
was granted by acall to Xt Sessi onGet Token isreturned, the Session shell examines the interact
callback list. If interaction is permitted and the interact callback list is not empty, the shell will send
an| nt er act Request to the session manager when an interact request is not already outstanding
for the application.

The type of interaction dialog that will be requested is specified by the interact dialog_type field
in the checkpoint token. The possible values for interact_dialog_type are SnDi al ogEr r or and
SnDi al ogNor mal . If atoken isreturned with interact_dialog_type containing SnDi al ogEr r or,
the interact request and any subsequent interact requests will be for an error dialog; otherwise, the
request will be for anormal dialog with the user.

When a token is returned with save success Fal se or interact_dialog_type SnDi al ogErr or,
tokens subsequently passed to callbacks during the same active Save Your sel f responsewill reflect
these changed values, indicating that an error condition has occurred during the checkpoint.

77

Shell Widgets

The request_cancel field is areturn value for interact callbacks only. Upon return from a procedure
on the save callback list, the value of the token's request_cancel field is not examined by the shell.
Thisis also true of tokens received through a call to Xt Sessi onGet Token.

Interacting with the User during a Checkpoint

When the session manager grants the application's regquest for user interaction, the Session shell
receivesan | nt er act message. The procedures registered on the interact callback list are executed,
but not asif executing atypical callback list. These procedures areindividually executed in sequence,
with a checkpoint token functioning as the sequencing mechanism. Each step in the sequence begins
by removing a procedure from the interact callback list and executing it with a token passed in the
call_data. Theinteract callback will typically pop up adial og box and return. When the user interaction
and associated application checkpointing has completed, the application must return the token by
calling Xt Sessi onRet ur nToken. Returning the token compl etes the current step and triggersthe
next step in the sequence.

During interaction the client may request cancellation of a shutdown. When a token passed as
call_data to an interact procedure is returned, if shutdown is Tr ue and cancel_shutdown is Fal se,
request_cancel indicates whether the application requests that the pending shutdown be cancelled.
If request_cancel is Tr ue, the field will also be Tr ue in any tokens subsequently granted during
the checkpoint operation. When a token is returned requesting cancellation of the session shutdown,
pending interact procedureswill till be called by the Session shell. When al interact procedures have
been removed from theinteract callback list, executed, and thefinal interact token returned to the shell,
an | nt er act Done message is sent to the session manager, indicating whether a pending session
shutdown is requested to be cancelled.

Responding to a Shutdown Cancellation

Callbacks registered on the cancel callback list are invoked when the Session shell processes a
Shut downCancel | ed message from the session manager. This may occur during the processing
of save callbacks, while waiting for interact permission, during user interaction, or after the save
operation is complete and the application is expecting a SaveConpl et e or aDi e message. The
call_data for these callbacksis NULL.

When the shell notices that a pending shutdown has been cancelled, the token cancel_shutdown field
will be Tr ue in tokens subsequently given to the application.

Receiving notice of a shutdown cancellation does not cancel the pending execution of save
calbacks or interact callbacks. After the cancel callbacks execute, if interact style is not
Sm nt er act St yl eNone and theinteract list is not empty, the procedures on the interact callback
list will be executed and passed a token with interact style S nt er act St yl eNone. The
application should not interact with the user, and the Session shell will not send an | nt er act Done

message.
Completing a Save

When thereisno user interaction, the shell regardsthe appli cation as having finished saving state when
all callback procedures on the save callback list have returned, and any additional tokens passed out by
Xt Sessi onGet Token have been returned by corresponding callsto Xt Sessi onRet ur nToken.
If the save operation involved user interaction, the above completion conditions apply, and in addition,
all requests for interaction have been granted or cancelled, and all tokens passed to interact callbacks
have been returned through calls to Xt Sessi onRet ur nToken. If the save operation involved a
manager client that requested the second phase, the above conditions apply to both the first and second
phase of the save operation.

When the application has finished saving state, the Session shell will report the result to the session
manager by sending the SaveYour sel f Done message. If the session is continuing, the shell
will receive the SaveConpl et e message when all applications have completed saving state. This

78

Shell Widgets

message indicates that applications may again allow changes to their state. The shell will execute the
save_complete callbacks. The call_data for these callbacksis NULL.

Responding to a Shutdown

Callbacks registered on the die callback list are invoked when the session manager sends a Di e
message. The callbacks on this list should do whatever is appropriate to quit the application. Before
executing procedures on the die callback list, the Session shell will close the connection to the session
manager and will remove the handler that watches for protocol messages. The call_data for these
callbacksis NULL.

Resigning from a Session

When the Session shell widget is destroyed, the destroy method will close the connection to the session
manager by sending a Connect i onCl osed protocol message and will remove the input callback
that was watching for session protocol messages.

When Xt Set Val ues isusedtosetjoin_sessiontoFal se,theset valuesmethod of the Session shell
will close the connection to the session manager if one exists by sending a Connect i onCl osed
message, and connection will be set to NULL.

Applicationsthat exit in response to user actions and that do not wait for phase 2 destroy to complete
on the Session shell should set join_session to Fal se before exiting.

When Xt Set Val ues is used to set connection to NULL, the Session shell will stop managing the
connection, if one exists. However, that session connection will not be closed.

Applications that wish to ensure continuation of a session connection beyond the destruction of the
shell should first retrieve the connection resource value, then set the connection resource to NULL,
and then they may safely destroy the widget without losing control of the session connection.

The error callback list will be called if an unrecoverable communications error occurs while the shell
is managing the connection. The shell will close the connection, set connection to NULL, remove the
input callback, and call the procedures registered on the error callback list. The call_data for these
callbacksis NULL.

79

Chapter 5. Pop-Up Widgets

Pop-

Pop-up widgets are used to create windows outside of the window hierarchy defined by the widget
tree. Each pop-up child has a window that is a descendant of the root window, so that the pop-up
window is not clipped by the pop-up widget's parent window. Therefore, pop-ups are created and
attached differently to their widget parent than normal widget children.

A parent of a pop-up widget does not actively manage its pop-up children; in fact, it usually does not
operate upon them in any way. The popup_list field in the Cor ePar t structure contains the list of
its pop-up children. This pop-up list exists mainly to provide the proper place in the widget hierarchy
for the pop-up to get resources and to provide aplace for Xt Dest r oyW dget tolook for all extant
children.

A composite widget can have both normal and pop-up children. A pop-up can be popped up from
almost anywhere, not just by its parent. The term child always refers to a normal, geometry-managed
widget on the composite widget's list of children, and the term pop-up child aways refers to awidget
on the pop-up list.

Up Widget Types
There are three kinds of pop-up widgets:
» Modeless pop-ups

A modeless pop-up (for example, adialog box that does not prevent continued interaction with the
rest of the application) can usually be manipulated by the window manager and looks like any other
application window from the user's point of view. The application main window itself is a special
case of a modeless pop-up.

» Modal pop-ups

A modal pop-up (for example, a dialog box that requires user input to continue) can sometimes be
mani pulated by the window manager, and except for events that occur in the dialog box, it disables
user-event distribution to the rest of the application.

* Spring-loaded pop-ups

A spring-loaded pop-up (for example, amenu) can seldom be manipulated by the window manager,
and except for events that occur in the pop-up or its descendants, it disables user-event distribution
to all other applications.

Modal pop-ups and spring-loaded pop-ups are very similar and should be coded as if they were the
same. In fact, the same widget (for example, a ButtonBox or Menu widget) can be used both as a
modal pop-up and as a spring-loaded pop-up within the same application. The main difference is
that spring-loaded pop-ups are brought up with the pointer and, because of the grab that the pointer
button causes, require different processing by the Intrinsics. Furthermore, all user input remap events
occurring outside the spring-loaded pop-up (e.g., in a descendant) are also delivered to the spring-
loaded pop-up after they have been dispatched to the appropriate descendant, so that, for example,
button-up can take down a spring-loaded pop-up no matter where the button-up occurs.

Any kind of pop-up, inturn, can pop up other widgets. Modal and spring-loaded pop-ups can constrain
user events to the most recent such pop-up or allow user events to be dispatched to any of the modal
or spring-loaded pop-ups currently mapped.

Regardless of their type, al pop-up widget classes are responsible for communicating with the X
window manager and therefore are subclasses of one of the Shell widget classes.

80

Pop-Up Widgets

Creating a Pop-Up Shell

For awidget to be popped up, it must be the child of a pop-up shell widget. None of the Intrinsics-
supplied shellswill simultaneously manage more than one child. Both the shell and child taken together
are referred to as the pop-up. When you need to use a pop-up, you aways refer to the pop-up by the
pop-up shell, not the child.

To create a pop-up shell, use Xt Cr eat ePopupShel | .

W dget Xt Cr eat ePopupShel | (nane, wi dget _cl ass, par ent, ar gs,
num ar gs) ;
name Specifies the instance name for the

created shell widget.

widget_class Specifies the widget class pointer for the
created shell widget.

parent Specifies the parent widget. Must be of
class Core or any subclass thereof.

args Specifies the argument list to override
any other resource specifications.

num_args Specifies the number of entries in the
argument list.

The Xt Cr eat ePopupShel | function ensures that the specified class is a subclass of Shell and,
rather than using insert_child to attach the widget to the parent's children list, attaches the shell to the
parent's popup_list directly.

The screen resource for this widget is determined by first scanning args for the XtNscreen argument.
If no XtNscreen argument is found, the resource database associated with the parent's screen is
gueried for the resource name.screen, class Class.Screen where Class is the class name field from
the Cor ed assPart of the specified widget_class. If this query fails, the parent's screen is used.
Oncethe screen is determined, the resource database associated with that screen is used to retrieve al
remaining resources for the widget not specified in args.

A spring-loaded pop-up invoked from atranslation table via Xt MenuPopup must already exist at the
time that the trandlation is invoked, so the translation manager can find the shell by name. Pop-ups
invoked in other ways can be created when the pop-up actualy is needed. This delayed creation of the
shell is particularly useful when you pop up an unspecified number of pop-ups. Y ou can look to seeif
an appropriate unused shell (that is, not currently popped up) exists and create a new shell if needed.

To create a pop-up shell using varargs lists, use Xt VaCr eat ePopupShel | .
W dget Xt VaCreat ePopupShel | (name, wi dget_cl ass, parent, ...);

name Specifies the instance name for the
created shell widget.

widget_class Specifies the widget class pointer for the
created shell widget.

parent Specifies the parent widget. Must be of
class Core or any subclass thereof.

Specifies the variable argument list
to override any other resource
specifications.

81

Pop-Up Widgets

Xt VaCr eat ePopupShel | isidentical infunctionto Xt Cr eat ePopupShel | withtheargsand
num_args parameters replaced by avarargs list as described in Section 2.5.1.

Creating Pop-Up Children

Once a pop-up shell is created, the single child of the pop-up shell can be created either statically or
dynamically.

At startup, an application can create the child of the pop-up shell, which is appropriate for pop-up
children composed of a fixed set of widgets. The application can change the state of the subparts of
the pop-up child as the application state changes. For example, if an application creates a static menu,
it can call Xt Set Sensi ti ve (or, ingenera, Xt Set Val ues) on any of the buttons that make up
the menu. Creating the pop-up child early means that pop-up time is minimized, especially if the
application calls Xt Real i zeW dget on the pop-up shell at startup. When the menu is needed, all
the widgets that make up the menu already exist and need only be mapped. The menu should pop up
as quickly asthe X server can respond.

Alternatively, an application can postpone the creation of the child until it isneeded, which minimizes
application startup time and allows the pop-up child to reconfigure itself each timeit is popped up. In
this case, the pop-up child creation routine might poll the application to find out if it should change
the sensitivity of any of its subparts.

Pop-up child creation does not map the pop-up, even if you create the child and call
Xt Real i zeW dget on the pop-up shell.

All shells have pop-up and pop-down callbacks, which provide the opportunity either to make last-
minute changes to a pop-up child before it is popped up or to change it after it is popped down. Note
that excessive use of pop-up callbacks can make popping up occur more slowly.

Mapping a Pop-Up Widget
Pop-ups can be popped up through several mechanisms:

e A cal to Xt Popup or Xt PopupSpr i ngLoaded.

» Oneof the supplied callback procedures Xt Cal | backNone, Xt Cal | backNonexcl usi ve,or
Xt Cal | backExcl usi ve.

 The standard translation action Xt MenuPopup.

Some of these routines take an argument of type Xt Gr abKi nd, which is defined as

typedef enum { Xt G abNone, Xt GrabNonexcl usive, Xt G abExcl usive} Xt G abKi nd;

The create_popup_child_proc procedure pointer in the shell widget instance record is of type
Xt Cr eat ePopupChi | dProc.

typedef void *Xt Creat ePopupChil dProc(w);

w Specifies the shell widget being popped up.

To map a pop-up from within an application, use Xt Popup.

voi d Xt Popup(popup_shell, grab_kind);

popup_shell Specifies the shell widget.

grab_kind Specifies the way in which user events
should be constrained.

The Xt Popup function performs the following:

82

Pop-Up Widgets

e CalsXt CheckSubcl ass to ensure popup_shell'sclassisasubclassof shel | W dget T ass.

* Raisesthewindow and returnsif the shell's popped_up field isaready Tr ue.

 Callsthe calback procedures on the shell's popup_callback list, specifying a pointer to the value
of grab_kind asthe call_data argument.

 Sets the shell popped_up field to Tr ue, the shell spring_loaded field to Fal se, and the shell
grab_kind field from grab_kind.

« If the shell's create_popup_child proc field is non-NULL, Xt Popup calls it with popup_shell as
the parameter.

» If grab_kind iseither Xt G abNonexcl usi ve or Xt G abExcl usi ve,itcals

Xt AddGr ab(popup_shel I, (grab_kind == Xt G abExcl usive), Fal se)
» CdlsXt Real i zeW dget with popup_shell specified.
e Cals XMapRai sed with the window of popup_shell.

To map a spring-loaded pop-up from within an application, use Xt PopupSpr i ngLoaded.
voi d Xt PopupSpri ngLoaded(popup_shell);
popup_shell Specifies the shell widget to be popped up.

The Xt PopupSpr i ngLoaded function performs exactly as Xt Popup except that it sets the shell
spring_loaded field to Tr ue and always calls Xt AddGr ab with exclusive Tr ue and spring-loaded
True.

To map a pop-up from a given widget's calback list, you also can register one of the
Xt Cal | backNone, Xt Cal | backNonexcl usi ve, or Xt Cal | backExcl usi ve convenience
routines as callbacks, using the pop-up shell widget as the client data.

voi d Xt Cal | backNone(w, client _data, call _data);

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifiesthe callback dataargument, which
is not used by this procedure.

voi d Xt Cal | backNonexcl usi ve(w, client_data, call _data);

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifiesthe callback dataargument, which
isnot used by this procedure.

voi d Xt Cal | backExcl usi ve(w, client_data, call _data);

w Specifies the widget.

client_data Specifies the pop-up shell.

call_data Specifiesthe callback dataargument, which
isnot used by this procedure.

The Xt Cal | backNone, Xt Cal | backNonexcl usi ve, and Xt Cal | backExcl usive
functions call Xt Popup with the shell specified by the client_ data argument and
grab_kind set as the name specifies. Xt Cal | backNone, Xt Cal | backNonexcl usi ve,
and Xt Cal | backExcl usi ve specify Xt G- abNone, Xt G abNonexcl usive, and
Xt GrabExcl usi ve, respectively. Each function then sets the widget that executed the callback list

83

Pop-Up Widgets

to be insensitive by calling Xt Set Sensi ti ve. Using these functions in callbacks is not required.
In particular, an application must provide customized code for callbacks that create pop-up shells
dynamically or that must do more than desensitizing the button.

Within a trandlation table, to pop up a menu when a key or pointer button is pressed or when the
pointer ismoved into awidget, use Xt MenuPopup, or itssynonym, MenuPopup. From atranslation
writer's point of view, the definition for thistrandation action is

voi d Xt MenuPopup(shel |l nane);

shell_name Specifies the name of the shell widget to pop
up.

Xt MenuPopup isknown to the translation manager, which registersthe corresponding built-in action
procedure Xt MenuPopupAct i on using Xt Regi st er G abAct i on specifying owner_events
True, event_ mask ButtonPressMask | ButtonRel easeMask, and pointer_mode and
keyboard mode G- abMbdeAsync.

If Xt MenuPopup is invoked on Butt onPress, it cals Xt PopupSpri ngLoaded on the
specified shell widget. If Xt MenuPopup is invoked on KeyPr ess or Ent er W ndow, it calls
Xt Popup onthe specified shell widget with grab_kind set to Xt G abNonexcl usi ve. Otherwise,
the translation manager generates a warning message and ignores the action.

Xt MenuPopup triesto find the shell by searching the widget tree starting at the widget inwhichitis
invoked. If it finds a shell with the specified name in the pop-up children of that widget, it pops up the
shell with the appropriate parameters. Otherwise, it moves up the parent chain to find a pop-up child
with the specified name. If Xt MenuPopup getsto the application top-level shell widget and has not
found a matching shell, it generates awarning and returns immediately.

Unmapping a Pop-Up Widget
Pop-ups can be popped down through several mechanisms:

» A cal to Xt Popdown
» The supplied callback procedure Xt Cal | backPopdown
» The standard tranglation action Xt MenuPopdown

To unmap a pop-up from within an application, use Xt Popdown.

voi d Xt Popdown(popup_shel I);

popup_shell Specifies the shell widget to pop down.
The Xt Popdown function performs the following:

» CalsXt CheckSubcl ass to ensure popup_shell'sclassisasubclassof shel | W dget O ass.

» Checksthat the popped _up field of popup_shell is Tr ue; otherwise, it returnsimmediately.

* Unmaps popup_shell's window and, if override redirect is Fal se, sends a synthetic
UnmapNot i fy event as specified by the Inter-Client Communication Conventions Manual.

* If popup_shell's grab_kind is either Xt G- abNonexcl usi ve or Xt G abExcl usi ve, it cals
Xt RenoveG ab.

* Sets popup_shell's popped up field to Fal se.

* Callsthe callback procedures on the shell's popdown_callback list, specifying apointer to the value
of the shell'sgrab_kind field as the call_data argument.

To pop down a pop-up from a callback list, you may use the callback Xt Cal | backPopdown.
voi d Xt Cal | backPopdown(w, client _data, call_data);

w Specifies the widget.

Pop-Up Widgets

client_data Specifies a pointer to the Xt Popdownl D
structure.

call_data Specifiesthe callback dataargument, which
is not used by this procedure.

The Xt Cal | backPopdown function casts the client_data parameter to a pointer of type
Xt Popdownl D.

typedef struct {
W dget shel | _wi dget;
W dget enabl e_wi dget ;
} Xt Popdownl DRec, *Xt Popdownl D;

The shell_widget is the pop-up shell to pop down, and the enable widget is usually the widget that
was used to pop it up in one of the pop-up callback convenience procedures.

Xt Cal | backPopdown calls Xt Popdown with the specified shell_widget and then calls
Xt Set Sensi ti ve toresensitize enable_widget.

Within atranslation table, to pop down a spring-loaded menu when akey or pointer button is released
or when the pointer is moved into awidget, use Xt MenuPopdown or its synonym, MenuPopdown.
From atrandation writer's point of view, the definition for thistrandation actionis

voi d Xt MenuPopdown(shel | _nane);

shell_name Specifies the name of the shell widget to pop
down.

If a shell name is not given, Xt MenuPopdown calls Xt Popdown with the widget for which the
trandation is specified. If shell_name is specified in the tranglation table, Xt MenuPopdown triesto
find the shell by looking up the widget tree starting at the widget in which it isinvoked. If it finds a
shell with the specified namein the pop-up children of that widget, it pops down the shell; otherwise,
it moves up the parent chain to find a pop-up child with the specified name. If Xt MenuPopdown
gets to the application top-level shell widget and cannot find a matching shell, it generates awarning
and returns immediately.

85

Chapter 6. Geometry Management

A widget does not directly control its size and location; rather, its parent is responsible for controlling
them. Although the position of childrenisusually left up to their parent, the widgets themselves often
have the best idea of their optimal sizes and, possibly, preferred locations.

To resolve physical layout conflicts between sibling widgets and between a widget and its parent,
the Intrinsics provide the geometry management mechanism. Almost all composite widgets have
a geometry manager specified in the geometry_manager field in the widget class record that is
responsible for the size, position, and stacking order of the widget's children. The only exception is
fixed boxes, which create their children themselves and can ensure that their children will never make
ageometry request.

Initiating Geometry Changes

Parents, children, and clients each initiate geometry changes differently. Because aparent has absolute
control of its children's geometry, it changes the geometry directly by calling Xt MoveW dget ,
Xt Resi zeW dget , or Xt Conf i gur eW dget . A child must ask its parent for a geometry change
by calling Xt MakeGeonet r yRequest or Xt MakeResi zeRequest . An application or other
client codeinitiates ageometry change by calling Xt Set Val ues on the appropriate geometry fields,
thereby giving thewidget the opportunity to modify or reject the client request beforeit gets propagated
to the parent and the opportunity to respond appropriately to the parent's reply.

When awidget that needs to change its size, position, border width, or stacking depth asksits parent's
geometry manager to make the desired changes, the geometry manager can allow the request, disallow
the request, or suggest a compromise.

When the geometry manager is asked to change the geometry of a child, the geometry manager may
also rearrange and resize any or al of the other children that it controls. The geometry manager can
move children around freely using Xt MoveW dget . When it resizes a child (that is, changes the
width, height, or border width) other than the one making the request, it should do so by calling
Xt Resi zeW dget . The requesting child may be given specia treatment; see the section called
“Child Geometry Management: The geometry _manager Procedure”. It can simultaneously move and
resize achild with asingle call to Xt Conf i gur eW dget .

Often, geometry managers find that they can satisfy a request only if they can reconfigure a widget
that they are not in control of; in particular, the composite widget may want to changeitsown size. In
this case, the geometry manager makes arequest to its parent's geometry manager. Geometry requests
can cascade this way to arbitrary depth.

Because such cascaded arbitration of widget geometry can involve extended negotiation, windows
are not actualy allocated to widgets at application startup until all widgets are satisfied with their
geometry; see the section called “ Creating Widgets’ and the section called “Realizing Widgets'.

Note

1. Thelntrinsicstreatment of stacking requestsisdeficient in several areas. Stacking requests
for unrealized widgets are granted but will have no effect. In addition, thereis no way to
do an Xt Set Val ues that will generate a stacking geometry request.

2. After a successful geometry request (one that returned Xt Geornet r yYes), a widget
does not know whether its resize procedure has been called. Widgets should have resize
procedures that can be called more than once without ill effects.

General Geometry Manager Requests

When making a geometry request, the child specifiesan Xt W dget Geonet r y structure.

86

Geometry Management

t ypedef unsigned | ong Xt GeonetryMask;
typedef struct {

}

Xt Geonet ryMask request _node;

Posi tion X, Y;

Di nensi on wi dt h, hei ght;
Di mensi on bor der _wi dt h;
W dget si bl i ng;

i nt st ack_node;

Xt W dget Geonetry;

To make a general geometry manager regquest from awidget, use Xt MakeGeonet r yRequest .

Xt GeonetryResult Xt MakeGeonet r yRequest (w, request, reply_return);

w

Specifies the widget making the request.
Must be of class RectObj or any subclass
thereof.

request Specifies the desired widget geometry

(size, position, border width, and
stacking order).

reply_return Returns the alowed widget size, or

may be NULL if the requesting
widget is not interested in handling
Xt Geonret r yAl nost .

Depending on the condition, Xt MakeCGeonet r yRequest performs the following:

If the widget is unmanaged or the widget's parent is not realized, it makes the changes and returns
Xt CeonetryvYes.

If the parent's class is not a subclass of conpositeW dgetd ass or the parent's
geometry _manager field isNULL, it issues an error.

If the widget's being_destroyed field is Tr ue, it returns Xt Geonet r yNo.

If the widget X, y, width, height, and border_width fields are all equal to the requested values, it
returns Xt Ceonet r yYes; otherwise, it calls the parent's geometry _manager procedure with the
given parameters.

If the parent's geometry manager returns Xt Geonet r yYes and if Xt CWQuer yOnl y is not set
in request->request_mode and if the widget is realized, Xt MakeGeonet r yRequest calsthe
XConf i gur eW ndowXIlib function to reconfigure the widget's window (set its size, location, and
stacking order as appropriate).

If the geometry manager returns Xt Georret r yDone, the change has been approved and actually
has been done. In this case, Xt MakeGeonet r yRequest does no configuring and returns
Xt Geonret ryYes. Xt MakeGeonet r yRequest never returns Xt Geonet r yDone.
Otherwise, Xt MakeGeonetryRequest just returns the resulting value from the parent's
geometry manager.

Children of primitive widgets are aways unmanaged; therefore, Xt MakeCGeonet r yRequest
alwaysreturns Xt Geomret r yYes when called by achild of a primitive widget.

The return codes from geometry managers are

t ypedef enum {

Xt GeonetryYes,

Xt Geonet r yNo,

Xt Geonret r yAl nost,
Xt Geonet r yDone

87

Geometry Management

} Xt GeonmetryResult;

Therequest_mode definitions are from <X11/ X. h>.

#define
#define
#define
#define
#define
#define
#define

CWK

oWy

CWAN dt h

CWHei ght

CWBor der W dt h
COWSi bl i ng
CW&t ackMbde

The Intrinsics al so support the following value.

#define

Xt CMueryOnl y

(1<<0)
(1<<1)
(1<<2)
(1<<3)
(1<<4)
(1<<5)
(1<<6)

(1<<7)

Xt CWuer yOnl y indicatesthat the corresponding geometry request isonly aquery asto what would
happen if this geometry request were made and that no widgets should actually be changed.

Xt MakeCGeonet r yRequest , likethe XConf i gur eW ndow Xlib function, usesrequest_ modeto
determine which fieldsin the Xt W dget Geonet r y structure the caller wants to specify.

The stack_mode definitions are from <X11/ X. h>:

#define
#define
#define
#define
#define

Above
Bel ow
Topl f
Bot t ol f
Opposi te

The Intrinsics also support the following value.

#define

Xt SMDont Change

A W DN P O

5

For definition and behavior of Above, Bel ow, Topl f,Bott onl f ,and Qpposi t e, BLAH inXlib
— C Language X Interface. Xt SMDont Change indicates that the widget wants its current stacking

order preserved.

Resize Requests

To make a simple resize request from a widget, you can use Xt MakeResi zeRequest as an
alternative to Xt MakeGeonet r yRequest .

t ypedef
wi dt h_return);

w

width

height

Xt Geonret ryResul t

Xt MakeResi zeRequest (w, wi dt h,

Specifies the widget making the request.
Must be of class RectObj or any subclass
thereof.

Specify the desired widget width and
height.

88

Geometry Management

width_return Return the alowed widget width and
height.

height_return

The Xt MakeResi zeRequest function, a simple interface to Xt MakeGeonet r yRequest ,
creates an Xt W dget Ceomnret ry structure and specifies that width and height should change by
setting request_mode to CWN dt h | CWHei ght . The geometry manager is free to modify any of
the other window attributes (position or stacking order) to satisfy the resize request. If the return
value is Xt Geomnet r yAl nost , width_return and height_return contain a compromise width and
height. If these are acceptable, the widget should immediately call Xt MakeResi zeRequest again
and request that the compromise width and height be applied. If the widget is not interested in
Xt Georret r yAl nost replies, it can pass NULL for width_return and height_return.

Potential Geometry Changes

Sometimes a geometry manager cannot respond to a geometry request from a child without first
making a geometry request to the widget's own parent (the original requestor's grandparent). If the
request to the grandparent would allow the parent to satisfy the original request, the geometry manager
can make the intermediate geometry request as if it were the originator. On the other hand, if the
geometry manager already has determined that the original request cannot be completely satisfied
(for example, if it always denies position changes), it needs to tell the grandparent to respond to the
intermediate request without actually changing the geometry because it does not know if the child
will accept the compromise. To accomplish this, the geometry manager uses Xt CWQuer yOnl y in
the intermediate request.

When Xt CWWQuer yOnl y isused, the geometry manager needsto cache enough informationto exactly
reconstruct the intermediate request. If the grandparent's response to the intermediate query was
Xt Geonet r yAl nost , the geometry manager needs to cache the entire reply geometry in the event
the child accepts the parent's compromise.

If the grandparent's response was Xt Geonet r yAl nost , it may also be necessary to cachethe entire
reply geometry from the grandparent when Xt CWQuer yOnl y isnot used. If the geometry manager is
still able to satisfy the original request, it may immediately accept the grandparent's compromise and
then act on the child's request. If the grandparent's compromise geometry is insufficient to alow the
child'srequest and if the geometry manager iswilling to offer adifferent compromiseto the child, the
grandparent's compromise should not be accepted until the child has accepted the new compromise.

Note that a compromise geometry returned with Xt Geonet r yAl nost is guaranteed only for the
next call to the same widget; therefore, a cache of size 1 is sufficient.

Child Geometry Management: The
geometry_manager Procedure

The geometry manager procedure pointer in a composite widget class is of type
Xt Geonet r yHandl er.

t ypedef Xt Geonret ryResul t * Xt Geonet r yHandl er (w, request,

geonetry_return);

w Passes the widget making the request.

request Passes the new geometry the child
desires.

geometry return Passes a geometry structure in which
the geometry manager may store a
compromise.

89

Geometry Management

A class can inherit its superclass's geometry manager during class initialization.

A bit set to zero in the request's request_mode field means that the child widget does not care about
the value of the corresponding field, so the geometry manager can change thisfield asit wishes. A bit
set to 1 means that the child wants that geometry element set to the value in the corresponding field.

If the geometry manager can satisfy all changes requested and if Xt CWQuer yOnl y is not specified,
it updates the widget's x, y, width, height, and border_width fields appropriately. Then, it returns
Xt Geonet ryYes, and the values pointed to by the geometry return argument are undefined. The
widget's window is moved and resized automatically by Xt MakeGeonet r yRequest .

Homogeneous composite widgets often find it convenient to treat the widget making the request
the same as any other widget, including reconfiguring it using Xt Confi gur eW dget or
Xt Resi zeW dget as part of its layout process, unless Xt CAQuer yOnl y is specified. If it does
this, it should return Xt Geon®et r yDone to inform Xt MakeGeonet r yRequest that it does not
need to do the configuration itself.

Note

To remain compatible with layout techniques used in older widgets (before
Xt Geonet r yDone was added to the Intrinsics), a geometry manager should avoid using
Xt Resi zeW dget or Xt Confi gur eW dget on the child making the request because
the layout process of the child may be in an intermediate state in which it is not prepared to
handle acall to itsresize procedure. A self-contained widget set may choose this aternative
geometry management scheme, however, provided that it clearly warns widget developers
of the compatibility consequences.

Although Xt MakeGeonet r yRequest resizes the widget's window (if the geometry manager
returns Xt Geomnret r yYes), it doesnot call the widget classsresize procedure. The requesting widget
must perform whatever resizing calculations are needed explicitly.

If the geometry manager disallows the request, the widget cannot change its geometry. The values
pointed to by geometry_return are undefined, and the geometry manager returns Xt Georret r yNo.

Sometimes the geometry manager cannot satisfy the request exactly but may be able to satisfy a
similar request. That is, it could satisfy only a subset of the requests (for example, size but not
position) or a lesser request (for example, it cannot make the child as big as the request but it can
make the child bigger than its current size). In such cases, the geometry manager fillsin the structure
pointed to by geometry_return with the actual changesit iswilling to make, including an appropriate
request_mode mask, and returns Xt Geonret r yAl nost . If abit in geometry return->request_ mode
is zero, the geometry manager agrees not to change the corresponding value if geometry return is
used immediately in anew request. If abit is 1, the geometry manager does change that element to the
corresponding value in geometry_return. More bits may be set in geometry_return->request_mode
than in the original request if the geometry manager intends to change other fields should the child
accept the compromise.

When Xt Geonet r yAl nost is returned, the widget must decide if the compromise suggested in
geometry returnisacceptable. If it is, the widget must not changeits geometry directly; rather, it must
make another call to Xt MakeCGeonet r yRequest .

If the next geometry request from this child uses the geometry return valuesfilled in by the geometry
manager with an Xt Georret r yAl nost return and if there have been no intervening geometry
requests on either its parent or any of its other children, the geometry manager must grant the request,
if possible. That is, if the child asks immediately with the returned geometry, it should get an answer
of Xt Geonet r yYes. However, dynamic behavior in the user'swindow manager may affect thefinal
outcome.

To return Xt Geonet ryYes, the geometry manager frequently rearranges the position of
other managed children by caling Xt MoveW dget. However, a few geometry managers

90

Geometry Management

may sometimes change the size of other managed children by calling Xt Resi zeW dget or
Xt Conf i gur eW dget . If Xt CWQuer yOnl y is specified, the geometry manager must return data
describing how it would react to this geometry request without actually moving or resizing any
widgets.

Geometry managers must not assume that the request and geometry return arguments point to
independent storage. The caller is permitted to use the same field for both, and the geometry manager
must allocate its own temporary storage, if necessary.

Widget Placement and Sizing

To moveasibling widget of the child making the geometry request, the parent uses Xt MoveW dget .

voi d Xt MoveW dget (w, X, Yy);

w Specifies the widget. Must be of class RectObj or any subclass
thereof.

X

y Specify the new widget x and y coordinates.

The Xt MoveW dget function returns immediately if the specified geometry fields are the same as
the old values. Otherwise, Xt MoveW dget writes the new x and y values into the object and, if the
object isawidget and is realized, issues an Xlib XMoveW ndow call on the widget's window.

To resize a sibling widget of the child making the geometry request, the parent uses
Xt Resi zeW dget .

voi d Xt Resi zeW dget (w, w dth, height, border_wi dth);

w Specifies the widget. Must be of class
RectObj or any subclass thereof.

width

height

border_width Specify the new widget size.

The Xt Resi zeW dget function returnsimmediately if the specified geometry fields are the same
as the old values. Otherwise, Xt Resi zeW dget writes the new width, height, and border_width
valuesinto the object and, if the object is awidget and is realized, issues an XConf i gur eW ndow
call on the widget's window.

If the new width or height isdifferent from the old values, Xt Resi zeW dget callstheobject'sresize
procedure to notify it of the size change.

To move and resize the sibling widget of the child making the geometry request, the parent uses
Xt Confi gur eW dget .

voi d Xt ConfigureWdget(w, x, y, width, height, border_w dth);

w Specifies the widget. Must be of class
RectObj or any subclass thereof.

X

y Specify the new widget x and y

coordinates.

91

Geometry Management

width
height
border_width Specify the new widget size.

The Xt Conf i gur eW dget function returns immediately if the specified new geometry fields are
all equal to the current values. Otherwise, Xt Conf i gur eW dget writesthe new x, y, width, height,
and border_width values into the object and, if the object is awidget and is realized, makes an Xlib
XConf i gur eW ndowcall on the widget's window.

If the new width or height is different from its old value, Xt Conf i gur eW dget callsthe object's
resize procedure to notify it of the size change; otherwise, it smply returns.

To resize a child widget that already has the new values of its width, height, and border width, the
parent uses Xt Resi zeW ndow.

voi d Xt Resi zeW ndow(W) ;
w Specifies the widget. Must be of class Core or any subclass thereof.

The Xt Resi zeW ndowfunction callsthe XConf i gur eW ndowXlib function to make thewindow
of the specified widget match itswidth, height, and border width. Thisrequest is done unconditionally
because there is no inexpensive way to tell if these values match the current values. Note that the
widget's resize procedureis not called.

There are very few times to use Xt Resi zeW ndow, instead, the parent should use
Xt Resi zeW dget .

Preferred Geometry

Some parents may be willing to adjust their layouts to accommodate the preferred geometries of their
children. They can use Xt Quer yGeonet r y to obtain the preferred geometry and, as they see fit,
can use or ignore any portion of the response.

To query achild widget's preferred geometry, use Xt Quer yGeonet ry.
Xt GeonretryResult Xt QueryGeonetry(w, intended, preferred_return);

w Specifies the widget. Must be of class
RectObj or any subclass thereof.

intended Specifies the new geometry the parent
plansto giveto the child, or NULL.

preferred return Returns the child widget's preferred
geometry.

To discover a child's preferred geometry, the child's parent stores the new geometry in the
corresponding fields of the intended structure, sets the corresponding bits in intended.request_mode,
and calls Xt Quer yCGeonet r y. The parent should set only those fields that areimportant to it so that
the child can determine whether it may be able to attempt changes to other fields.

Xt QueryGeonet ry clears al bits in the preferred_return->request_ mode field and checks
the query geometry field of the specified widget's class record. If query geometry is not
NULL, Xt QueryGeonetry calls the query_geometry procedure and passes as arguments the
specified widget, intended, and preferred_return structures. If the intended argument is NULL,
Xt Quer yGeonet ry replaces it with a pointer to an Xt W dget Geonetry structure with
request_mode equal to zero before calling the query _geometry procedure.

92

Geometry Management

Note

If Xt Quer yGeonet ry iscaled fromwithin ageometry manager procedure for the widget
that issued Xt MakeGeonet r yRequest or Xt MakeResi zeRequest , the results are
not guaranteed to be consistent with the requested changes. The change request passed to the
geometry manager takes precedence over the preferred geometry.

The query_geometry procedure pointer is of type Xt Geonet r yHandl er .

t ypedef Xt Geonret r yResul t (* Xt Geonet ryHandl er) (w, request,
preferred_return);

w Passes the child widget whose preferred
geometry is required.

request Passes the geometry changes that the
parent plans to make.

preferred return Passes a structure in which the child
returns its preferred geometry.

The query_geometry procedure is expected to examine the bits set in request->request mode,
evaluate the preferred geometry of the widget, and store the result in preferred return (setting
the bits in preferred return->request_mode corresponding to those geometry fields that it cares
about). If the proposed geometry change is acceptable without modification, the query _geometry
procedure should return Xt Geonet r yYes. If at least onefield in preferred return with abit set in
preferred return->request_mode is different from the corresponding field in request or if a bit was
setin preferred return->request_mode that was not set in the request, the query _geometry procedure
should return Xt Geonet r yAl nost . If the preferred geometry isidentical to the current geometry,
the query_geometry procedure should return Xt Geonet r y No.

Note

The query_geometry procedure may assume that no Xt MakeResi zeRequest or
Xt MakeGeonet r yRequest is in progress for the specified widget; that is, it is not
required to construct a reply consistent with the requested geometry if such a request were
actually outstanding.

After caling the query geometry procedure or if the query geometry field is NULL,
Xt Quer yGeonet ry examines al the unset bits in preferred_return->request mode and sets
the corresponding fields in preferred return to the current values from the widget instance. If
CW5t ackMbde isnot set, the stack_mode field is set to Xt SMDont Change. Xt Quer yGeonet ry
returns the value returned by the query geometry procedure or Xt GeonetryYes if the
query_geometry field isNULL.

Therefore, the caller can interpret a return of Xt Geonet ryYes as not needing to evaluate the
contents of the reply and, more important, not needing to modify its layout plans. A return of
Xt Geonret r yAl nost means either that both the parent and the child expressed interest in at least
one common field and the child's preference does not match the parent's intentions or that the child
expressed interest in afield that the parent might need to consider. A return value of Xt Geonet r yNo
means that both the parent and the child expressed interest in a field and that the child suggests that
the field's current value in the widget instance is its preferred value. In addition, whether or not the
caller ignores the return value or the reply mask, it is guaranteed that the preferred return structure
contains complete geometry information for the child.

Parents are expected to call Xt Quer yGeonet ry in their layout routine and wherever else the
information is significant after change_managed has been called. The first time it is invoked, the
changed_managed procedure may assume that the child's current geometry isits preferred geometry.
Thus, the child is still responsible for storing values into its own geometry during its initialize
procedure.

93

Geometry Management

Size Change Management: The resize
Procedure

A child can beresized by its parent at any time. Widgetsusually need to know when they have changed
size so that they can lay out their displayed data again to match the new size. When a parent resizes
achild, it calls Xt Resi zeW dget , which updates the geometry fields in the widget, configures the
window if the widget is realized, and calls the child's resize procedure to notify the child. The resize
procedure pointer is of type Xt W dget Pr oc.

If a class need not recalculate anything when awidget is resized, it can specify NULL for the resize
field in its class record. Thisis an unusual case and should occur only for widgets with very trivial
display semantics. The resize procedure takes awidget asits only argument. The x, y, width, height,
and border_width fields of the widget contain the new values. The resize procedure should recalculate
the layout of internal data as needed. (For example, a centered Label in a window that changes size
should recalculate the starting position of the text.) The widget must obey resize as a command
and must not treat it as a request. A widget must not issue an Xt MakeCGeonet r yRequest or
Xt MakeResi zeRequest call from itsresize procedure.

94

Chapter 7. Event Management

While Xlib allows the reading and processing of events anywhere in an application, widgetsin the X
Toolkit neither directly read events nor grab the server or pointer. Widgets register proceduresthat are
to be called when an event or class of events occurs in that widget.

A typical application consists of startup code followed by an event loop that reads events and
dispatches them by calling the procedures that widgets have registered. The default event loop
provided by the Intrinsicsis Xt AppMai nLoop.

The event manager is a collection of functions to perform the following tasks:

» Add or remove event sources other than X server events (in particular, timer interrupts, file input,
or POSIX signals).

* Query the status of event sources.

» Add or remove procedures to be called when an event occurs for a particular widget.

» Enable and disable the dispatching of user-initiated events (keyboard and pointer events) for a
particular widget.

» Constrain the dispatching of events to a cascade of pop-up widgets.

» Register procedures to be called when specific events arrive.

» Register procedures to be called when the Intrinsics will block.

 Enable safe operation in a multi-threaded environment.

Most widgets do not need to call any of the event handler functions explicitly. The normal interface
to X eventsis through the higher-level translation manager, which maps sequences of X events, with
modifiers, into procedure cals. Applications rarely use any of the event manager routines besides
Xt AppMai nLoop.

Adding and Deleting Additional Event
Sources

While most applications are driven only by X events, some applications need to incorporate other
sources of input into the Intrinsics event-handling mechanism. The event manager provides routines
to integrate notification of timer events and file data pending into this mechanism.

The next section describes functions that provide input gathering from files. The application registers
the files with the Intrinsics read routine. When input is pending on one of the files, the registered
callback procedures are invoked.

Adding and Removing Input Sources

To register anew file as an input source for a given application context, use Xt AppAddl nput .

Xtlnputld Xt AppAddl nput (app_cont ext, source, condi tion, proc,
client_data);

app_context Specifies the application context that
identifies the application.

source Specifies the source file descriptor on a
POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates a read,
write, or exception condition or some other
operating-system-dependent condition.

95

Event Management

proc Specifies the procedure to be called when
the condition is found.

client_data Specifies an argument passed to the
specified procedure when it is called.

The Xt AppAddI nput function registers with the Intrinsics read routine a new source of events,
which is usudly file input but can also be file output. Note that file should be loosely interpreted to
mean any sink or source of data. Xt AppAddI nput also specifies the conditions under which the
source can generate events. When an event is pending on this source, the callback procedureis called.

The legal values for the condition argument are operating-system-dependent. On a POSIX-based
system, source is afile number and the condition is some union of the following:

XtInputReadM ask Specifies that proc is to be called when
source has data to be read.

XtlnputWriteM ask Specifies that proc is to be called when
sourceis ready for writing.

XtlnputExceptM ask Specifies that proc is to be called when
source has exception data.

Callback procedure pointers used to handle file events are of type (* Xt | nput Cal | backPr oc) .
typedef void (*XtlnputCallbackProc)(client_data, source, id);

client_data Passes the client data argument that
was registered for this procedure in
Xt AppAddl nput .

source Passes the source file descriptor generating
the event.
id Passes the id returned from the

corresponding Xt AppAddI nput call.

See the section caled “Using the Intrinsics in a Multi-Threaded Environment” for information
regarding the use of Xt AppAdd| nput in multiple threads.

To discontinue a source of input, use Xt Renovel nput .
voi d Xt Renmovel nput (i d);

id Specifies the id returned from the corresponding
Xt AppAddl nput call.

The Xt Renovel nput function causes the Intrinsics read routine to stop watching for events from
the file source specified by id.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information
regarding the use of Xt Renovel nput in multiple threads.

Adding and Removing Blocking Notifications

Occasionaly it isdesirablefor an application to receive notification when the Intrinsics event manager
detects no pending input from file sources and no pending input from X server event sources and is
about to block in an operating system call.

To register ahook that is called immediately prior to event blocking, use Xt AppAddBl ockHook.

96

Event Management

Xt Bl ockHookl d Xt AppAddBl ockHook(app_context, proc, client_data);

app_context Specifies the application context that
identifies the application.

proc Specifies the procedure to be called before
blocking.

client_data Specifies an argument passed to the

specified procedure when it is called.

The Xt AppAddBI ockHook function registers the specified procedure and returns an identifier for
it. The hook procedure proc is called at any time in the future when the Intrinsics are about to block
pending some input.

The procedure pointers used to provide notification of event blocking are of type
Xt Bl ockHookPr oc.

typedef void *Xt Bl ockHookProc(client _data);

client_data Passes the client data argument that
was registered for this procedure in
Xt AppAddBl ockHook.

To discontinue the use of aprocedure for blocking notification, use Xt RenoveBl ockHook.
voi d Xt RenpoveBl ockHook(i d);

id Specifies the identifier returned from the corresponding call to
Xt AppAddBI ockHook.

The Xt RenpveBl ockHook function removes the specified procedure from the list of procedures
that are called by the Intrinsics read routine before blocking on event sources.

Adding and Removing Timeouts

Thetimeout facility notifiesthe application or the widget through acallback procedure that a specified
timeinterval has elapsed. Timeout values are uniquely identified by an interval id.

To register atimeout callback, use Xt AppAddTi meQut .

Xtlntervalld Xt AppAddTi meQut (app_cont ext, i nterval, proc,

client_data);

app_context Specifies the application context for which
thetimer isto be set.

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when

the time expires.

client_data Specifies an argument passed to the
specified procedure when it is called.

The Xt AppAddTi neCQut function creates a timeout and returns an identifier for it. The timeout
value is set to interval. The callback procedure proc is called when Xt AppNext Event or
Xt AppPr ocessEvent isnext caled after thetimeinterval elapses, and then thetimeout isremoved.

Callback procedure pointers used with timeouts are of type Xt Ti nmer Cal | backPr oc.

97

Event Management

typedef void *XtTimerCall backProc(client_data, timer);

client_data Passes the client data argument that
was registered for this procedure in
Xt AppAddTi meCQut .

timer Passes the id returned from the
corresponding Xt AppAddTi neCut call.

See the section called “Using the Intrinsics in a Multi-Threaded Environment” for information
regarding the use of Xt AppAddTi meCut in multiple threads.

To clear atimeout value, use Xt RermoveTi neCut .
voi d Xt RenoveTi meQut (timer);
timer Specifiestheid for the timeout request to be cleared.

The Xt RenmoveTi meQut function removes the pending timeout. Note that timeouts are
automatically removed once they trigger.

Please refer to Section 7.12 for information regarding the use of Xt RenoveTi neQut in multiple
threads.

Adding and Removing Signal Callbacks

The signal facility notifies the application or the widget through a callback procedure that a signal
or other external asynchronous event has occurred. The registered callback procedures are uniquely
identified by asignal id.

Prior to establishing a signal handler, the application or widget should call Xt AppAddSi gnal and
storetheresulting identifier in aplace accessibleto the signal handler. When asignal arrives, thesignal
handler should call Xt Not i ceSi gnal to notify the Intrinsicsthat asignal has occurred. To register
asignal callback use Xt AppAddSi gnal .

Xt Si gnal I d Xt AppAddSi gnal (app_context, proc, client_data);

app_context Specifies the application context that
identifies the application.

proc Specifies the procedure to be called when
the signal is noticed.

client_data Specifies an argument passed to the
specified procedure when it is called.

The calback procedure pointers used to handle signal events are of type
(*Xt Si gnal Cal | backProc).

typedef void (*XtSignal Call backProc)(client _data, id);

client_data Passes the client data argument that
was registered for this procedure in
Xt AppAddSi gnal .

id Passes the id returned from the
corresponding Xt AppAddSi gnal call.

To notify the Intrinsics that a signal has occurred, use Xt Not i ceSi gnal .

voi d Xt NoticeSignal (id);

98

Event Management

id Specifies the id returned from the corresponding
Xt AppAddSi gnal call.

On a POSIX-based system, Xt Not i ceSi gnal is the only Intrinsics function that can safely be
called from a signal handler. If Xt Not i ceSi gnal isinvoked multiple times before the Intrinsics
are able to invoke the registered callback, the callback is only called once. Logicaly, the Intrinsics
maintain “pending” flag for each registered callback. Thisflagisinitially Fal se andissetto Tr ue by
Xt Not i ceSi gnal . WhenXt AppNext Event or Xt AppPr ocessEvent (withamaskincluding
Xt | Msi gnal) iscaled, all registered callbacks with “pending” Tr ue areinvoked and the flags are
reset to Fal se.

If the signal handler wants to track how many times the signal has been raised, it can keep its own
private counter. Typicaly the handler would not do any other work; the callback does the actual
processing for the signal. The Intrinsics never block signalsfrom being raised, so if agiven signal can
be rai sed multiple times before the I ntrinsics can invoke the callback for that signal, the callback must
be designed to deal with this. In another case, a signal might be raised just after the Intrinsics sets the
pending flag to Fal se but before the callback can get control, in which case the pending flag will
still be Tr ue after the callback returns, and the Intrinsics will invoke the callback again, even though
all of the signal raises have been handled. The callback must also be prepared to handle this case.

To remove aregistered signal callback, call Xt RenoveSi gnal .
voi d Xt RenoveSi gnal (i d);

id Specifies the id returned by the corresponding call to
Xt AppAddSi gnal .

The client should typically disable the source of the signal before calling Xt RenoveSi gnal . If
the signal could have been raised again before the source was disabled and the client wants to
processit, then after disabling the source but before calling Xt RenmoveSi gnal theclient cantest for
signals with Xt AppPendi ng and process them by calling Xt AppPr ocessEvent with the mask
Xt | M5i gnal .

Constraining Events to a Cascade of Widgets

Modal widgets are widgets that, except for the input directed to them, lock out user input to the
application.

When amodal menu or modal dialog box is popped up using Xt Popup, user events (keyboard and
pointer events) that occur outside the modal widget should be delivered to the modal widget or ignored.
In no case will user events be delivered to awidget outside the modal widget.

Menus can pop up submenus, and dialog boxes can pop up further dialog boxes to create a pop-up
cascade. In this case, user events may be delivered to one of several modal widgets in the cascade.

Display-related events should be delivered outside the modal cascade so that exposure events and
the like keep the application's display up-to-date. Any event that occurs within the cascade is
delivered as usual. The user events delivered to the most recent spring-loaded shell in the cascade
when they occur outside the cascade are called remap events and are KeyPr ess, KeyRel ease,
But t onPress, and Butt onRel ease. The user events ignored when they occur outside the
cascade are Moti onNoti fy and Ent er Noti fy. All other events are delivered normaly. In
particular, note that thisis one way in which widgets can receive LeaveNot i f y eventswithout first
receiving Ent er Not i f y events; they should be prepared to deal with this, typically by ignoring any
unmatched LeaveNot i f y events.

Xt Popup usesthe Xt AddGr ab and Xt Renmove G ab functionsto constrain user eventsto a modal
cascade and subsequently to remove a grab when the modal widget is popped down.

To constrain or redirect user input to amodal widget, use Xt AddGr ab.

99

Event Management

voi d Xt AddG ab(w, exclusive, spring_| oaded);

w Specifies the widget to add to the modal
cascade. Must be of class Core or any
subclass thereof.

exclusive Specifies whether user events should be
dispatched exclusively to this widget or
also to previous widgets in the cascade.

spring_loaded Specifies whether this widget was
popped up because the user pressed a
pointer button.

TheXt AddGr ab function appendsthe widget to the modal cascade and checksthat exclusiveisTr ue
if spring_loaded is Tr ue. If this condition is not met, Xt AddGr ab generates a warning message.

The modal cascade is used by Xt Di spat chEvent when it tries to dispatch a user event. When at
least one modal widget is in the widget cascade, Xt Di spat chEvent first determines if the event
should be delivered. It starts at the most recent cascade entry and follows the cascade up to and
including the most recent cascade entry added with the exclusive parameter Tr ue.

This subset of the modal cascade along with all descendants of these widgets comprise the active
subset. User eventsthat occur outside the widgetsin this subset areignored or remapped. Modal menus
with submenus generally add a submenu widget to the cascade with exclusive Fal se. Modal dialog
boxes that need to restrict user input to the most deeply nested dialog box add a subdialog widget to
the cascade with exclusive Tr ue. User events that occur within the active subset are delivered to the
appropriate widget, which isusually a child or further descendant of the modal widget.

Regardless of wherein the application they occur, remap eventsare alwaysdelivered to the most recent
widget in the active subset of the cascade registered with spring_loaded Tr ue, if any such widget
exists. If the event occurred in the active subset of the cascade but outside the spring-loaded widget,
it isdelivered normally before being delivered also to the spring-loaded widget. Regardless of where
it is dispatched, the Intrinsics do not modify the contents of the event.

To remove the redirection of user input to amodal widget, use Xt RenmoveGr ab.

voi d Xt RenmoveG ab(w);

w Specifies the widget to remove from the modal cascade.

The Xt RemoveGr ab function removes widgets from the modal cascade starting at the most recent

widget up to and including the specified widget. It issues awarning if the specified widget is not on
the modal cascade.

Requesting Key and Button Grabs

The Intrinsics provide a set of key and button grab interfaces that are parallel to those provided by
Xlib and that allow the Intrinsics to modify event dispatching when necessary. X Toolkit applications
and widgetsthat need to passively grab keys or buttons or actively grab the keyboard or pointer should
use the following Intrinsics routines rather than the corresponding Xlib routines.

To passively grab asingle key of the keyboard, use Xt G- abKey.

voi d Xt Gr abKey(w dget, keycode, nodi fi ers, owner _events,
poi nt er _node, keyboard node);

widget Specifies the widget in whose window
the key isto be grabbed. Must be of class
Core or any subclass thereof.

100

Event Management

keycode, modifiers, owner_events, pointer_mode, Specify arguments to XGr abKey; see
keyboard mode Section 12.2 in Xlib — C Language X
Interface.

Xt Gr abKey calls XGr abKey specifying the widget's window as the grab window if the widget is
realized. The remaining arguments are exactly as for XGr abKey. If the widget is not realized, or is
later unrealized, thecall to XGr abKey isperformed (again) when thewidget isrealized and itswindow
becomes mapped. In the future, if Xt Di spat chEvent iscalled with aKeyPr ess event matching
the specified keycode and modifiers (which may be AnyKey or AnyModi fi er, respectively) for
the widget's window, the Intrinsics will call Xt Ungr abKeyboar d with the timestamp from the
KeyPr ess event if either of the following conditionsis true:

e Thereisamodal cascade and the widget is not in the active subset of the cascade and the keyboard
was not previously grabbed, or
 XFilterEvent returnsTr ue.

To cancel apassive key grab, use Xt Ungr abKey.

voi d Xt UngrabKey(w dget, keycode, nodifiers);

widget Specifies the widget in whose window the key
was grabbed.
keycode, modifiers Specify arguments to XuUngrabKey; see

Section 12.2 in Xlib — C Language X Interface.

The Xt Ungr abKey procedure calls XUngr abKey specifying the widget's window as the ungrab
window if the widget is realized. The remaining arguments are exactly as for XUngr abKey. If the
widget is not realized, Xt Ungr abKey removes a deferred Xt Gr abKey request, if any, for the
specified widget, keycode, and modifiers.

To actively grab the keyboard, use Xt G- abKeyboar d.

i nt Xt Gr abKeyboar d(w dget owner _events, poi nt er _node,
keyboard node, tine);

widget Specifies the widget for whose window
the keyboard isto be grabbed. Must be of
class Core or any subclass thereof.

owner_events, pointer_mode, keyboard_mode, time Specify arguments to
XG abKeyboar d; see Section 12.2 in
Xlib— C Language X Interface.

If the specified widget is redlized, Xt G abKeyboar d cals XG abKeyboar d specifying the
widget's window as the grab window. The remaining arguments and return value are exactly as
for XGr abKeyboar d. If the widget is not realized, Xt G abKeyboar d immediately returns
Gr abNot Vi ewabl e. No future automatic ungrab isimplied by Xt G- abKeyboar d.

To cancel an active keyboard grab, use Xt Ungr abKeyboar d.

voi d Xt Ungr abKeyboard(w dget, tine);

widget Specifies the widget that has the active keyboard grab.

time Specifies the additional argument to
XUngr abKeyboar d; see Section 12.2 in Xlib — C

Language X Interface.

Xt Ungr abKeyboar d cals XUngr abKeyboar d with the specified time.

101

Event Management

To passively grab asingle pointer button, use Xt Gr abBut t on.

voi d Xt GrabBut t on(wi dget, but t on, nodi fi ers, owner _events,
event _mask, poi nter_node, keyboard node, confine_to, cursor);

widget Specifies the widget in whose window
the button is to be grabbed. Must be of
class Core or any subclass thereof.

button, modifiers, owner_events, event_mask, Specify arguments to XGr abBut t on;
pointer_mode, keyboard mode, confine to, cursor see Section 12.1 in Xlib — C Language
X Interface.

Xt Gr abBut t on calls XGr abBut t on specifying the widget's window as the grab window if the
widget is realized. The remaining arguments are exactly as for XGr abBut t on. If the widget is not
realized, or is later unrealized, the call to XGr abBut t on is performed (again) when the widget is
realized and its window becomes mapped. In the future, if Xt Di spat chEvent is caled with a
But t onPr ess event matching the specified button and modifiers (which may be AnyBut t on or
AnyModi fi er, respectively) for the widget'swindow, the Intrinsics will call Xt Ungr abPoi nt er
with the timestamp from the But t onPr ess event if either of the following conditionsis true:

» Thereisamodal cascade and the widget is not in the active subset of the cascade and the pointer
was not previously grabbed, or
* XFilterEvent returnsTr ue.

To cancel apassive button grab, use Xt Ungr abBut t on.

voi d Xt UngrabButton(w dget, button, nodifiers);

widget Specifiesthewidget in whose window the button
was grabbed.
button, modifiers Specify arguments to XUngr abBut t on; see

Section 12.1in Xlib — C Language X Interface.

The Xt Ungr abButt on procedure cals XUngr abButt on specifying the widget's window
as the ungrab window if the widget is redlized. The remaining arguments are exactly as
for XUngr abBut t on. If the widget is not realized, Xt Ungr abButt on removes a deferred
Xt GrabBut t on request, if any, for the specified widget, button, and modifiers.

To actively grab the pointer, use Xt G- abPoi nt er .

i nt Xt G abPointer(w dget, owner_events, event_nask, pointer_node,
keyboard node, confine_to, cursor, tine);

widget Specifies the widget for whose window
the pointer is to be grabbed. Must be of
class Core or any subclass thereof.

owner_events, event_mask, pointer_mode, Specify arguments to XGr abPoi nt er ;
keyboard mode, confine to, cursor, time see Section 12.1 in Xlib — C Language
X Interface.

If the specified widget is realized, Xt G- abPoi nt er calls XG abPoi nt er, specifying the
widget's window as the grab window. The remaining arguments and return value are exactly
as for XGr abPoi nt er. If the widget is not realized, Xt G abPoi nt er immediately returns
G abNot Vi ewabl e. No future automatic ungrab isimplied by Xt G- abPoi nt er .

To cancel an active pointer grab, use Xt Ungr abPoi nt er .

voi d Xt UngrabPoi nter (w dget, tinme);

102

Event Management

widget Specifies the widget that has the active pointer grab.

time Specifiesthetime argument to XUngr abPoi nt er ; see
Section 12.1in Xlib — C Language X Interface.

Xt Ungr abPoi nt er calls XUngr abPoi nt er with the specified time.

Focusing Events on a Child

To redirect keyboard input to a normal descendant of a widget without calling XSet | nput Focus,
use Xt Set Keyboar dFocus.

voi d Xt Set Keyboar dFocus(subtree, descendent);

subtree Specifies the subtree of the hierarchy for
which the keyboard focusisto be set. Must be
of class Core or any subclass thereof.

descendant Specifies either the normal (non-pop-up)
descendant of subtree to which keyboard
eventsarelogically directed, or None. Itisnot
an error to specify None when no input focus
was previously set. Must be of class Object or
any subclass thereof.

Xt Set Keyboar dFocus causes Xt Di spat chEvent to remap keyboard events occurring within
the specified subtree and dispatch them to the specified descendant widget or to an ancestor. If the
descendant's class is not a subclass of Core, the descendant is replaced by its closest windowed
ancestor.

When there is no modal cascade, keyboard events can be dispatched to awidget in one of five ways.
Assume the server delivered the event to the window for widget E (because of X input focus, key or
keyboard grabs, or pointer position).

* If neither E nor any of E's ancestors have redirected the keyboard focus, or if the event activated a
grab for E as specified by acall to Xt G- abKey with any value of owner_events, or if the keyboard
is actively grabbed by E with owner_events Fal se viaXt Gr abKeyboar d or Xt G abKey on
aprevious key press, the event is dispatched to E.

* Beginning with the ancestor of E closest to the root that has redirected the keyboard focus or E if ho
such ancestor exists, if the target of that focus redirection hasin turn redirected the keyboard focus,
recursively follow this focus chain to find awidget F that has not redirected focus.

» « |f Eisthefinal focustarget widget F or a descendant of F, the event is dispatched to E.

« If Eisnot F, an ancestor of F, or a descendant of F, and the event activated a grab for E as
specified by acal to Xt G- abKey for E, Xt Ungr abKeyboar d iscalled.
« If Eisan ancestor of F, and the event is akey press, and either

» E has grabbed the key with Xt G- abKey and owner_eventsFal se, or

» E has grabbed the key with Xt Gr abKey and owner_events Tr ue, and the coordinates of the
event are outside the rectangle specified by E's geometry, then the event is dispatched to E.

» Otherwise, define A asthe closest common ancestor of E and F:

« If there is an active keyboard grab for any widget via either Xt Gr abKeyboard or
Xt G abKey on a previous key press, or if no widget between F and A (noninclusive) has
grabbed the key and modifier combination with Xt G- abKey and any value of owner_events,
the event is dispatched to F.

 Else, the event is dispatched to the ancestor of F closest to A that has grabbed the key and
modifier combination with Xt Gr abKey.

When thereisamodal cascade, if thefinal destination widget asidentified aboveisin the active subset
of the cascade, the event is dispatched; otherwise the event is remapped to a spring-loaded shell or
discarded. Regardless of whereit is dispatched, the Intrinsics do not modify the contents of the event.

103

Event Management

When subtree or one of its descendants acquiresthe X input focus or the pointer movesinto the subtree
such that keyboard events would now be delivered to the subtree, a Focusl n event is generated
for the descendant if FocusChange events have been selected by the descendant. Similarly, when
subtree loses the X input focus or the keyboard focus for one of its ancestors, aFocusQut eventis
generated for descendant if Focus Change events have been selected by the descendant.

A widget tree may also actively manage the X server input focus. To do so, a widget class specifies
an accept_focus procedure.

The accept_focus procedure pointer is of type Xt Accept FocusPr oc.

t ypedef Bool ean *Xt Accept FocusProc(w, tine);

w Specifies the widget.

time Specifies the X time of the event causing the accept focus.
Widgets that need the input focus can call XSet | nput Focus explicitly, pursuant to the restrictions
of the Inter-Client Communication Conventions Manual. To allow outside agents, such as the parent,
to cause awidget to take the input focus, every widget exports an accept_focus procedure. The widget
returns avalue indicating whether it actually took the focus or not, so that the parent can give the focus
to another widget. Widgets that need to know when they lose the input focus must use the Xlib focus
notification mechanism explicitly (typically by specifying trandationsfor Focus| n and FocusQut
events). Widgets classes that never want the input focus should set the accept_focus field to NULL.

To call awidget's accept_focus procedure, use Xt Cal | Accept Focus.

Bool ean Xt Cal | Accept Focus(w, tine);

w Specifies the widget. Must be of class Core or any subclass
thereof.

time Specifies the X time of the event that is causing the focus
change.

The Xt Cal | Accept Focus function calls the specified widget's accept_focus procedure, passing it
the specified widget and time, and returns what the accept_focus procedure returns. If accept_focus
isNULL, Xt Cal | Accept Focus returnsFal se.

Events for Drawables That Are Not a Widget's Window

Sometimes an application must handle events for drawables that are not associated with widgets in
itswidget tree. Examplesinclude handling Gr aphi csExpose and NoExpose events on Pixmaps,
and handling Pr oper t yNot i f y events on the root window.

To register adrawable with the Intrinsics event dispatching, use Xt Regi st er Dr awabl e.

voi d Xt Regi st erDrawabl e(di spl ay, drawable, w dget);

display Specifies the drawable's display.
drawable Specifies the drawable to register.
widget Specifies the widget to register the drawable for.

Xt Regi st er Dr awabl e associates the specified drawable with the specified widget so that future
callsto Xt W ndowToW dget with the drawablewill return the widget. The default event dispatcher
will dispatch future events that arrive for the drawable to the widget in the same manner as events
that contain the widget's window.

104

Event Management

If the drawable is already registered with another widget, or if the drawable isthe window of awidget
in the client's widget tree, the results of calling Xt Regi st er Dr awabl e are undefined.

To unregister a drawable with the Intrinsics event dispatching, use Xt Unr egi st er Dr awabl e.
voi d Xt Unregi st er Drawabl e(di spl ay, drawable);

display Specifies the drawable's display.

drawable Specifies the drawable to unregister.

Xt Unr egi st er Drawabl e removes an association created with Xt Regi st er Dr awabl e. If
the drawable is the window of a widget in the client's widget tree the results of calling
Xt Unr egi st er Dr awabl e are undefined.

Querying Event Sources

The event manager provides several functions to examine and read events (including file and timer
events) that are in the queue. The next three functions are Intrinsics equivalents of the XPendi ng,
XPeekEvent , and XNext Event Xlib calls.

To determineif there are any events on the input queue for agiven application, use Xt AppPendi ng.
Xt I nput Mask Xt AppPendi ng(app_cont ext);

app_context Specifies the application context that
identifies the application to check.

The Xt AppPendi ng function returns anonzero valueif there are events pending from the X server,
timer pending, other input sources pending, or signal sources pending. The valuereturnedisabit mask
that isthe OR of Xt | MXEvent , Xt | MTi mer, Xt | MAl t er nat el nput , and Xt | M5i gnal (see
Xt AppPr ocessEvent). If there are no events pending, Xt AppPendi ng flushes the output
buffers of each Display in the application context and returns zero.

To return the event from the head of a given application's input queue without removing input from
the queue, use Xt AppPeekEvent .

Bool ean Xt AppPeekEvent (app_context, event _return);

app_context Specifies the application context that
identifies the application.

event_return Returns the event information to the
specified event structure.

If thereisan X event inthe queue, Xt AppPeekEvent copiesitinto event_returnand returns Tr ue.
If no X input is on the queue, Xt AppPeekEvent flushes the output buffers of each Display in the
application context and blocks until some input is available (possibly calling some timeout callbacks
in the interim). If the next available input is an X event, Xt AppPeekEvent fillsin event_return
and returns Tr ue. Otherwise, the input is for an input source registered with Xt AppAddI nput ,
and Xt AppPeekEvent returns Fal se. The sample implementations provides XtAppPeekEvent as
described. Timeout callbacks are called while blocking for input. If some input for an input source is
available, Xt AppPeekEvent will return Tr ue without returning an event.

To remove and return the event from the head of a given application's X event queue, use
Xt AppNext Event .

voi d Xt AppNext Event (app_cont ext, event_return);

app_context Specifies the application context that
identifies the application.

105

Event Management

event_return Returns the event information to the
specified event structure.

If the X event queueisempty, Xt AppNext Event flushesthe X output buffers of each Display inthe
application context and waitsfor an X event whilelooking at the other input sources and timeout values
and calling any callback procedures triggered by them. This wait time can be used for background
processing; see the section called “ Adding Background Work Procedures”.

Dispatching Events

The Intrinsics provide functions that dispatch events to widgets or other application code. Every
client interested in X events on awidget uses Xt AddEvent Handl er to register which eventsit is
interested in and a procedure (event handler) to be called when the event happensin that window. The
translation manager automatically registers event handlers for widgets that use trand ation tables; see
Chapter 10, Translation Management.

Applications that need direct control of the processing of different types of input should use
Xt AppProcessEvent .

voi d Xt AppProcessEvent (app_cont ext, mask);

app_context Specifies the application context that
identifies the application for which to
process input.

mask Specifies what types of events to process.

The mask is the bitwise inclusve OR
of any combination of Xt| MXEvent,
Xt 1 MIimer, Xt MAlternatel nput,
and Xt| Msi gnal. As a convenience,
I ntrinsi c. h definesthe symbolic name
Xt 1 MAl'| to bethebitwiseinclusive OR of
these four event types.

The Xt AppPr ocessEvent function processes one timer, input source, signal source, or X event.
If there is no event or input of the appropriate type to process, then Xt AppPr ocessEvent blocks
until there is. If there is more than one type of input available to process, it is undefined which will
get processed. Usually, this procedure is not called by client applications; see Xt AppMai nLoop.
Xt AppPr ocessEvent processes timer events by calling any appropriate timer callbacks, input
sources by calling any appropriate input callbacks, signal source by calling any appropriate signal
callbacks, and X events by calling Xt Di spat chEvent .

When an X event isreceived, it is passed to Xt Di spat chEvent , which callsthe appropriate event
handlers and passesthem the widget, the event, and client-specific dataregistered with each procedure.
If no handlersfor that event are registered, the event isignored and the dispatcher simply returns.

To dispatch an event returned by Xt AppNext Event , retrieved directly from the Xlib queue, or
synthetically constructed, to any registered event filters or event handlers, call Xt Di spat chEvent .

Bool ean Xt Di spat chEvent (event);

event Specifies a pointer to the event structure to be dispatched
to the appropriate event handlers.

The Xt Di spat chEvent function first calls XFi | t er Event with the event and the window
of the widget to which the Intrinsics intend to dispatch the event, or the event window if the
Intrinsics would not dispatch the event to any handlers. If XFi | t er Event returns Tr ue and the
event activated a server grab as identified by a previous call to Xt G- abKey or Xt G- abBut t on,
Xt Di spat chEvent calls Xt Ungr abKeyboar d or Xt Ungr abPoi nt er with the timestamp

106

Event Management

from the event and immediately returns Tr ue. If XFi | t er Event returns Tr ue and a grab was not
activated, Xt Di spat chEvent just immediately returns Tr ue. Otherwise, Xt Di spat chEvent
sends the event to the event handler functions that have been previously registered with the dispatch
routine. Xt Di spat chEvent returns True if XFi | t er Event returned Tr ue, or if the event
was dispatched to some handler, and Fal se if it found no handler to which to dispatch the
event. Xt Di spat chEvent records the last timestamp in any event that contains a timestamp
(see Xt Last Ti mest anpPr ocessed), regardiess of whether it was filtered or dispatched. If a
modal cascade is active with spring _loaded Tr ue, and if the event is a remap event as defined
by Xt AddGr ab, Xt Di spat chEvent may dispatch the event a second time. If it does so,
Xt Di spat chEvent will call XFi | t er Event again with the window of the spring-loaded widget
prior to the second dispatch, and if XFi | t er Event returns Tr ue, the second dispatch will not be
performed.

The Application Input Loop

To process all input from a given application in a continuous loop, use the convenience procedure
Xt AppMai nLoop.

voi d Xt AppMai nLoop(app_cont ext);

app_context Specifies the application context that
identifies the application.

The Xt AppMai nLoop function processes events using Xt AppPr ocessEvent , varying the mask
parameter and using Xt AppPendi ng to ensure that it has a chance to handle events of al types,
i.e, X events, timer events, input events and signal sources. This constitutes the main loop of X
Toolkit applications. There is nothing special about Xt AppMai nLoop; it Simply processes events
in a conditional loop. At the bottom of the loop, it checksto see if the specified application context's
destroy flag is set. If the flag is set, the loop breaks. The whole loop is enclosed between a matching
Xt AppLock and Xt AppUnl ock.

Applications can provide their own version of thisloop, which tests some global termination flag or
tests that the number of top-level widgets is larger than zero before circling back for the next event.

The design of Xt AppMai nLoop has changed since Release 6. Originally it looped over calls to
Xt AppNext Event , and Xt Di spat chEvent , but because the latter returns only after an X event
(not for timers, signals, inputs), it was modified to allow any type of event to break out of the loop.

Setting and Checking the Sensitivity State of
a Widget

Many widgets have a mode in which they assume a different appearance (for example, are grayed out
or stippled), do not respond to user events, and become dormant.

When dormant, a widget is considered to be insensitive. If a widget is insensitive,
the event manager does not dispatch any events to the widget with an event
type of KeyPress, KeyRel ease, ButtonPress, ButtonRel ease, MdtionNotify,
Enter Noti fy,LeaveNoti fy, Focusl n,or FocusQut .

A widget can be insensitive because its sensitive field is Fal se or because one of its ancestors is
insensitive and thus the widget's ancestor_sensitive field also is Fal se. A widget can but does not
need to distinguish these two cases visually.

Note

Pop-up shells will have ancestor_sensitive Fal se if the parent was insensitive when the
shell was created. Since Xt Set Sensi ti ve on the parent will not modify the resource

107

Event Management

of the pop-up child, clients are advised to include a resource specification of the form
“*TransientShell.ancestorSensitive: True” in the application defaults resource file or to
otherwise ensure that the parent is sensitive when creating pop-up shells.

To set the sensitivity state of awidget, use Xt Set Sensi ti ve.
voi d Xt SetSensitive(w, sensitive);

w Specifies the widget. Must be of class RectObj
or any subclass thereof.

sensitive Specifies whether the widget should receive
keyboard, pointer, and focus events.

The Xt Set Sensi ti ve function first calls Xt Set Val ues on the current widget with an argument
list specifying the XtNsensitive resource and the new value. If sensitive is Fal se and the widget's
classisasubclass of Composite, Xt Set Sensi ti ve recursively propagates the new value down the
child tree by calling Xt Set Val ues on each child to set ancestor_sensitive to Fal se. If sensitive
is Tr ue and the widget's class is a subclass of Composite and the widget's ancestor_sensitive field
isTrue, Xt Set Sensi ti ve setsthe ancestor_sensitive of each child to Tr ue and then recursively
calls Xt Set Val ues on each normal descendant that is now sensitive to set ancestor_sensitive to
True.

Xt Set Sensi ti ve calls Xt Set Val ues to change the sensitive and ancestor_sensitive fields of
each affected widget. Therefore, when one of these changes, the widget's set_values procedure should
take whatever display actions are needed (for example, graying out or stippling the widget).

Xt Set Sensitive maintains the invariant that, if the parent has either sensitive or
ancestor_sensitive Fal se, then al children have ancestor_sensitive Fal se.

To check the current sensitivity state of awidget, use Xt | sSensi ti ve.
Bool ean Xtl1sSensitive(w);
w Specifies the object. Must be of class Object or any subclass thereof.

The Xt | sSensi ti ve function returns Tr ue or Fal se to indicate whether user input events are
being dispatched. If object's classis a subclass of RectObj and both sensitive and ancestor_sensitive
areTrue, Xt | sSensi ti ve returns Tr ue; otherwiseg, it returns Fal se.

Adding Background Work Procedures

The Intrinsics have some limited support for background processing. Because most applications spend
most of their timewaiting for input, you can register anidle-timework procedurethat iscalled whenthe
toolkit would otherwise block in Xt AppNext Event or Xt AppPr ocessEvent . Work procedure
pointers are of type (* Xt Wor kPr oc) .

t ypedef Bool ean (*XtWorkProc) (client_data);

client_data Passes the client data specified when the
work procedure was registered.

This procedure should return Tr ue when it is done to indicate that it should be removed. If the
procedure returns Fal se, it will remain registered and called again when the application is next idle.
Work procedures should be very judicious about how much they do. If they run for more than asmall
part of a second, interactive feel islikely to suffer.

To register awork procedure for a given application, use Xt AppAddWor kPr oc.

Xt Wor kProcl d Xt AppAddwWor kProc(app_context, proc, client_data);

108

Event Management

app_context Specifies the application context that
identifies the application.

proc Specifies the procedure to be called when
the application isidle.

client_data Specifies the argument passed to the
specified procedure when it is called.

The Xt AppAddWor kPr oc function adds the specified work procedure for the application identified
by app_context and returns an opaque unique identifier for this work procedure. Multiple work
procedures can beregistered, and the most recently added oneisalwaysthe onethat is called. However,
if awork procedure adds another work procedure, the newly added one has lower priority than the
current one.

To remove a work procedure, either return Tr ue from the procedure when it is called or use
Xt RenoveWsr kPr oc outside of the procedure.

voi d Xt RemoveWdr kProc(i d);
id Specifies which work procedure to remove.

The Xt RemoveWbr kPr oc function explicitly removes the specified background work procedure.

X Event Filters

The event manager provides filters that can be applied to specific X events. The filters, which screen
out eventsthat are redundant or are temporarily unwanted, handle pointer motion compression, enter/
leave compression, and exposure compression.

Pointer Motion Compression

Widgets can have a hard time keeping up with arapid stream of pointer motion events. Furthermore,
they usually do not care about every motion event. To throw out redundant motion events, the widget
class field compress_motion should be Tr ue. When a request for an event would return a motion
event, the Intrinsics check if there are any other motion events for the same widget immediately
following the current one and, if so, skip all but the last of them.

Enter/Leave Compression

To throw out pairs of enter and leave events that have no intervening events, as can happen
when the user moves the pointer across a widget without stopping in it, the widget class field
compress_enterleave should be Tr ue. These enter and leave events are not delivered to the client if
they are found together in the input queue.

Exposure Compression

Many widgets prefer to process a series of exposure events as a single expose region rather than as
individual rectangles. Widgets with complex displays might use the expose region asaclip listin a
graphics context, and widgets with simple displays might ignore the region entirely and redisplay their
whole window or might get the bounding box from the region and redisplay only that rectangle.

In either case, these widgets do not care about getting partial exposure events. The compress_exposure
field in the widget class structure specifies the type and number of exposure eventsthat are dispatched
to the widget's expose procedure. Thisfield must beinitialized to one of the following values:

#def i ne Xt ExposeNoConpr ess ((Xt Enum Fal se)

109

Event Management

#def i ne Xt ExposeConpressSeri es ((Xt Enum True)
#def i ne Xt ExposeConpressMul tiple <i npl ement at i on- defi ned>
#def i ne Xt ExposeConpr essMaxi mal <i npl ement at i on- defi ned>

optionally ORed with any combination of the following flags (all with implementation-
defined vaues): Xt ExposeGr aphi csExpose, Xt ExposeG aphi csExposeMer ged,
Xt ExposeNoExpose, and Xt ExposeNoRegi on.

If the compress exposure field in the widget class structure does not specify
Xt ExposeNoConpr ess, the event manager calls the widget's expose procedure only once for a
series of exposure events. In this case, all Expose or G aphi csExpose events are accumulated
into aregion. When the final event is received, the event manager replaces the rectangle in the event
with the bounding box for the region and calls the widget's expose procedure, passing the modified
exposure event and (unless Xt ExposeNoRegi on is specified) the region. For more information on
regions, see Section 16.5in Xlib — C Language X Interface.

The values have the following interpretation:
Xt ExposeNoConpr ess

» Noexposurecompressionisperformed; every selected event isindividually dispatched to the expose
procedure with a region argument of NULL.

Xt ExposeConpr essSeri es

» Each series of exposure events is coalesced into a single event, which is dispatched when an
exposure event with count equal to zero is reached.

Xt ExposeConpressMul ti pl e

» Consecutive series of exposure events are coalesced into a single event, which is dispatched when
an exposure event with count equal to zero is reached and either the event queue is empty or the
next event is not an exposure event for the same widget.

Xt ExposeConpr essMaxi mal

» All expose series currently in the queue for the widget are coalesced into a single event without
regard to intervening nonexposure events. If apartial seriesisin the end of the queue, the Intrinsics
will block until the end of the seriesis received.

The additional flags have the following meaning:
Xt ExposeG aphi csExpose

» Specifies that Gr aphi csExpose events are also to be dispatched to the expose procedure.
G aphi csExpose events are compressed, if specified, in the same manner as Expose events.

Xt ExposeGr aphi csExposeMer ged

» Specifiesinthe case of Xt ExposeConpr essMul ti pl e and Xt ExposeConpr essMaxi mal
that seriesof Gr aphi csExpose and Expose eventsareto be compressed together, with the final
event type determining the type of the event passed to the expose procedure. If thisflag is not set,
then only series of the same event type as the event at the head of the queue are coalesced. Thisflag
aso implies Xt Expose& aphi csExpose.

Xt ExposeNoExpose

» Specifies that NoExpose events are also to be dispatched to the expose procedure. NoExpose
events are never coalesced with other exposure events or with each other.

Xt ExposeNoRegi on

110

Event Management

 Specifiesthat the final region argument passed to the expose procedureis NULL. Therectanglein
the event will still contain bounding box information for the entire series of compressed exposure
events. This option saves processing time when the region is not needed by the widget.

Widget Exposure and Visibility

Every primitive widget and some composite widgets display data on the screen by means of direct
Xlib calls. Widgets cannot simply write to the screen and forget what they have done. They must keep
enough state to redisplay the window or parts of it if aportion is obscured and then reexposed.

Redisplay of a Widget: The expose Procedure

The expose procedure pointer in awidget classis of type (* Xt ExposePr oc) .

typedef void (*Xt ExposeProc)(w, event, region);

w Specifies the widget instance requiring redisplay.

event Specifies the exposure event giving the rectangle
requiring redisplay.

region Specifies the union of all rectangles in this exposure
sequence.

The redisplay of awidget upon exposure is the responsibility of the expose procedure in the widget's
class record. If awidget has no display semantics, it can specify NULL for the expose field. Many
composite widgets serve only as containers for their children and have no expose procedure.

Note

If the expose procedure is NULL, Xt Real i zeW dget fills in a default bit gravity of
Nor t hWest Gr avi t y beforeit calls the widget's realize procedure.

If the widget's compress exposure class field specifies Xt ExposeNoConpress or
Xt ExposeNoRegi on, or if the event type is NoExpose (see the section called “Exposure
Compression”), region is NULL. If Xt ExposeNoConpr ess is not specified and the event type is
not NoExpose, theeventisthefinal event in the compressed series but X, y, width, and height contain
the bounding box for all the compressed events. The region is created and destroyed by the Intrinsics,
but the widget is permitted to modify the region contents.

A small simple widget (for example, Label) can ignore the bounding box information in the event and
redisplay the entire window. A more complicated widget (for example, Text) can use the bounding
box information to minimize the amount of calculation and redisplay it does. A very complex widget
uses theregion asaclip list in a GC and ignores the event information. The expose procedure is not
chained and is therefore responsible for exposure of all superclass data as well asits own.

However, it often is possible to anticipate the display needs of severa levels of subclassing. For
example, rather than implement separate display procedures for the widgets Label, Pushbutton, and
Toggle, you could write asingle display routine in Label that uses display state fields like

Bool ean i nvert;
Bool ean hi ghl i ght ;
Di nensi on hi ghl i ght _wi dt h;

Label would have invert and highlight always Fal se and highlight_width zero. Pushbutton would
dynamically set highlight and highlight_width, but it would leave invert aways Fal se. Finaly,
Toggle would dynamically set al three. In this case, the expose procedures for Pushbutton and

111

Event Management

Toggle inherit their superclass's expose procedure; see the section called “Inheritance of Superclass
Operations’.

Widget Visibility

Some widgets may use substantial computing resources to produce the data they will display.
However, this effort is wasted if the widget is not actually visible on the screen, that is, if the widget
is obscured by another application or isiconified.

The visible field in the core widget structure provides a hint to the widget that it need not compute
display data. This field is guaranteed to be Tr ue by the time an exposure event is processed if any
part of the widget isvisible, but isFal se if thewidget is fully obscured.

Widgets can use or ignore the visible hint. If they ignore it, they should have visible interest in their
widget classrecord set Fal se. In such cases, thevisiblefield isinitialized Tr ue and never changes.
If visible interestis Tr ue, the event manager asksfor Vi si bi | i t yNot i f y eventsfor the widget
and setsvisibleto True onVi si bi | i t yUnobscuredorVisi bilityPartiall yQoscured
eventsand Fal se on Vi si bi | it yFul | yObscur ed events.

X Event Handlers

Event handlers are procedures called when specified events occur in a widget. Most widgets need
not use event handlers explicitly. Instead, they use the Intrinsics translation manager. Event handler
procedure pointers are of thetype (* Xt Event Handl er) .

t ypedef voi d (* Xt Event Handl er) (w, client_data, event,

continue_to_di spatch);

w Specifies the widget for which the event
arrived.

client_data Specifies any client-specific information

registered with the event handler.

event Specifies the triggering event.

continue_to_dispatch Specifies whether the remaining event
handlers registered for the current event
should be called.

After receiving an event and before calling any event handlers, the Boolean pointed to by
continue_to_dispatchisinitializedto Tr ue. When an event handler iscalled, it may decidethat further
processing of the event is not desirable and may store Fal se in this Boolean, in which case any
handlers remaining to be called for the event are ignored.

The circumstances under which the Intrinsics may add event handlers to a widget are
currently implementation-dependent. Clients must therefore be aware that storing Fal se into the
continue_to_dispatch argument can lead to portability problems.

Event Handlers That Select Events

To register an event handler procedure with the dispatch mechanism, use Xt AddEvent Handl er .

voi d Xt AddEvent Handl er (w, event _mask, nonnmaskabl e, proc,
client _data);

w Specifies the widget for which this event
handler isbeing registered. Must be of class
Core or any subclass thereof.

112

Event Management

event_mask Specifies the event mask for which to call
this procedure.

nonmaskable Specifies whether this procedure should
be called on the nonmaskable events
(G aphi csExpose, NoExpose,
Sel ecti ond ear,
Sel ecti onRequest ,
Sel ectionNotify,
C i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be called.
client_data Specifies additional datato be passed to the
event handler.

The Xt AddEvent Handl er function registers a procedure with the dispatch mechanism that is to
be called when an event that matches the mask occurs on the specified widget. Each widget has a
single registered event handler list, which will contain any procedure/client_data pair exactly once
regardless of the manner in which it is registered. If the procedure is already registered with the
same client_data value, the specified mask augments the existing mask. If the widget is realized,
Xt AddEvent Handl er calls XSel ect | nput , if necessary. The order in which this procedure is
called relative to other handlers registered for the same event is not defined.

To remove a previously registered event handler, use Xt RenoveEvent Handl er .

voi d Xt RenoveEvent Handl er (w, event _nask, nonmaskabl e, proc,
client_data);

w Specifies the widget for which this
procedure is registered. Must be of class
Core or any subclass thereof.

event_mask Specifies the event mask for which to
unregister this procedure.

nonmaskable Specifies whether this procedure should
be removed on the nonmaskable events
(G aphi csExpose, NoExpose,
Sel ecti ond ear,
Sel ecti onRequest,
Sel ectionNotify,
d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be removed.
client_data Specifies the registered client data.

The Xt RenoveEvent Handl er function unregisters an event handler registered with
Xt AddEvent Handl er or Xt | nsert Event Handl er for the specified events. The request is
ignored if client_data does not match the value given when the handler was registered. If the
widget is realized and no other event handler requires the event, Xt RenoveEvent Handl er cals
XSel ect | nput . If the specified procedure has not been registered or if it has been registered with
adifferent value of client_data, Xt RenbveEvent Handl er returnswithout reporting an error.

To stop a procedure registered with Xt AddEvent Handl er or Xt | nsert Event Handl er
from receiving al selected events, call Xt RenoveEvent Handl er with an event_mask of
Xt Al | Event s and nonmaskable Tr ue. The procedure will continue to receive any eventsthat have
been specified in callsto Xt AddRawEvent Handl er or Xt | nsert RawEvent Handl er.

113

Event Management

To register an event handler procedure that receives events before or after all previously registered
event handlers, use Xt | nsert Event Handl er.

t ypedef enum {XtListHead, XtListTail} XtListPosition;

voi d Xt I nsert Event Handl er (w, event _nmask, nonmaskabl e, pr oc,
client _data, position);

w Specifies the widget for which this event
handler isbeing registered. Must be of class
Core or any subclass thereof.

event_mask Specifies the event mask for which to call
this procedure.

nonmaskable Specifies whether this procedure should
be called on the nonmaskable events
(G aphi csExpose, NoExpose,
Sel ectiond ear,
Sel ecti onRequest,
Sel ectionNotify,
d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be called.

client_data Specifies additional datato be passed to the
client's event handler.

position Specifies when the event handler is to be
called relativeto other previously registered
handlers.

Xt I nsert Event Handl er isidentical to Xt AddEvent Handl er with the additiona position
argument. If position is Xt Li st Head, the event handler is registered so that it is called before any
event handlers that were previously registered for the same widget. If positionis Xt Li st Tai | , the
event handler isregistered to be called after any previously registered event handlers. If the procedure
is aready registered with the same client_data value, the specified mask augments the existing mask
and the procedure is repositioned in the list.

Event Handlers That Do Not Select Events

On occasion, clients need to register an event handler procedure with the dispatch mechanism without
explicitly causing the X server to select for that event. To do this, use Xt AddRawEvent Handl er .

voi d Xt AddRawEvent Handl er (w, event _nask, nonmaskabl e, proc,
client _data);

w Specifies the widget for which this event
handler isbeing registered. Must be of class
Core or any subclass thereof.

event_mask Specifies the event mask for which to call
this procedure.

nonmaskable Specifies whether this procedure should
be called on the nonmaskable events
(G aphi csExpose, NoExpose,
Sel ecti ond ear,

114

Event Management

Sel ecti onRequest ,

Sel ectionNotify,

d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be called.

client_data Specifies additional datato be passed to the
client's event handler.

The Xt AddRawkEvent Handl er functionissimilar to Xt AddEvent Handl er except that it does
not affect the widget's event mask and never causes an XSel ect | nput for its events. Note that the
widget might already have those mask bits set because of other nonraw event handlers registered on
it. If the procedure is already registered with the same client_data, the specified mask augments the
existing mask. The order in which this procedureis called relative to other handlers registered for the
same event is not defined.

To remove apreviously registered raw event handler, use Xt RenoveRawEvent Handl er .

void Xt RemoveRawEvent Handl er (w, event_mask, nonnmaskable, proc,
client_data);

w Specifies the widget for which this
procedure is registered. Must be of class
Core or any subclass thereof.

event_mask Specifies the event mask for which to
unregister this procedure.

nonmaskable Specifies whether this procedure should
be removed on the nonmaskable events
(G aphi csExpose, NoExpose,
Sel ectiond ear,
Sel ecti onRequest,
Sel ectionNotify,
d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be registered.
client_data Specifies the registered client data.

The Xt RenbveRawEvent Handl er function unregisters an event handler registered with
Xt AddRawEvent Handl er or Xt | nsert RawEvent Handl er for the specified events without
changing the window event mask. Therequest isignored if client_data does not match the value given
when the handler was registered. If the specified procedure has not been registered or if it has been
registered with a different value of client_data, Xt RenoveRawEvent Handl er returns without
reporting an error.

To stop a procedure registered with Xt AddRawEvent Handl er or
Xt | nsert RawEvent Handl er from receiving al nonselected events, call
Xt RenoveRawEvent Handl er with an event_mask of Xt Al | Event s and nonmaskable Tr ue.
The procedure will continue to receive any events that have been specified in cals to
Xt AddEvent Handl er or Xt | nsert Event Handl er .

To register an event handler procedure that receives events before or after all previously registered
event handlers without selecting for the events, use Xt | nser t RawEvent Handl er .

void XtlnsertRawevent Handl er(w, event_nask, nonnmaskable, proc,
client_data, position);

115

Event Management

w Specifies the widget for which this event
handler isbeing registered. Must be of class
Core or any subclass thereof.

event_mask Specifies the event mask for which to call
this procedure.

nonmaskable Specifies whether this procedure should
be called on the nonmaskable events
(G aphi csExpose, NoExpose,
Sel ecti ond ear,
Sel ecti onRequest ,
Sel ectionNotify,
d i ent Message, and
Mappi ngNotify).

proc Specifies the procedure to be registered.

client_data Specifies additional datato be passed to the
client's event handler.

position Specifies when the event handler is to be
called relativeto other previously registered
handlers.

The Xt | nsert RawEvent Handl er function is similar to Xt | nsert Event Handl er except
that it does not modify the widget's event mask and never causesan XSel ect | nput for the specified
events. If the procedure is aready registered with the same client_data value, the specified mask
augments the existing mask and the procedure is repositioned in the list.

Current Event Mask

To retrieve the event mask for a given widget, use Xt Bui | dEvent Mask.
Event Mask Xt Bui | dEvent Mask(w) ;
w Specifies the widget. Must be of class Core or any subclass thereof.

The Xt Bui | dEvent Mask function returns the event mask representing the logica OR of
all event masks for event handlers registered on the widget with Xt AddEvent Handl er and
Xt I nsert Event Handl er and al event trandations, including accelerators, installed on the
widget. This is the same event mask stored into the XSet W ndowAt t ri but es structure by
Xt Real i zeW dget and sent to the server when event handlers and translations are installed or
removed on the realized widget.

Event Handlers for X11 Protocol Extensions

To register an event handler procedure with the Intrinsics dispatch mechanism according to an event
type, use Xt | nsert Event TypeHand| er .

voi d Xt nsert Event TypeHandl er (Wi dget, event_type, select_data, proc,
client_data, position);

widget Specifies the widget for which this event
handler isbeing registered. Must be of class
Core or any subclass thereof.

event_type Specifies the event type for which to call
this event handler.

116

Event Management

select _data Specifies data used to request events of the
specified type from the server, or NULL.

proc Specifies the event handler to be called.

client_data Specifies additional datato be passed to the
event handler.

position Specifies when the event handler is to be
called relativeto other previously registered
handlers.

Xt I nsert Event TypeHandl er registers a procedure with the dispatch mechanism that is to be
called when an event that matches the specified event_type is dispatched to the specified widget.

If event_type specifies one of the core X protocol events, then select_data must be a pointer to a
value of type Event Mask, indicating the event mask to be used to select for the desired event.
This event mask is included in the value returned by Xt Bui | dEvent Mask. If the widget is
realized, Xt | nsert Event TypeHandl er callsXSel ect | nput if necessary. Specifying NULL
for select_data is equivalent to specifying a pointer to an event mask containing 0. Thisis similar to
the Xt | nser t RawEvent Handl er function.

If event_type specifies an extension event type, then the semantics of the data pointed to by select_data
are defined by the extension selector registered for the specified event type.

In either case the Intrinsics are not required to copy the data pointed to by select data, so the caller
must ensure that it remains valid as long as the event handler remains registered with this value of
select_data.

The position argument allows the client to control the order of invocation of event handlers registered
for the same event type. If the client does not care about the order, it should normally specify
Xt Li st Tai | , which registers this event handler after any previously registered handlers for this
event type.

Each widget has a single registered event handler list, which will contain any procedure/client_data
pair exactly onceif itisregistered with Xt | nser t Event TypeHandl er , regardless of the manner
in which it is registered and regardless of the value(s) of select_data. If the procedure is aready
registered with the same client_data value, the specified mask augments the existing mask and the
procedure is repositioned in the list.

To remove an event handler registered with Xtl| nsert Event TypeHandl er, use
Xt RenobveEvent TypeHandl er .

voi d Xt RenobveEvent TypeHandl er (Wi dget, event _type, select _data, proc,
client _data);

widget Specifies the widget for which the event
handler was registered. Must be of class
Core or any subclass thereof.

event_type Specifies the event type for which the
handler was registered.

select _data Specifies data used to deselect events of the
specified type from the server, or NULL.

proc Specifies the event handler to be removed.

client_data Specifies the additional client data with

which the procedure was registered.

117

Event Management

The Xt RenoveEvent TypeHandl er function unregisters an event handler registered with
Xt I nsert Event TypeHandl er for the specified event type. Therequest isignored if client_data
does not match the value given when the handler was registered.

If event_type specifies one of the core X protocol events, select_data must be a pointer to a value of
type Event Mask, indicating the event mask to be used to deselect for the appropriate
event. If the widget is redlized, Xt RenoveEvent TypeHandl er calls XSel ect | nput if
necessary. Specifying NULL for select_data is equivalent to specifying a pointer to an event mask
containing 0. Thisis similar to the Xt RenbveRawEvent Handl er function.

If event_type specifies an extension event type, then the semantics of the data pointed to by select_data
are defined by the extension selector registered for the specified event type.

To register a procedure to select extension events for a widget, use
Xt Regi st er Ext ensi onSel ect or .

voi d Xt Regi st er Ext ensi onSel ect or (di spl ay, m n_event _type,
max_event _type, proc, client_data);

display Specifies the display for which the
extension selector isto be registered.

min_event_type

max_event_type Specifies the range of event types for the
extension.

proc Specifies the extension selector
procedure.

client_data Specifies additional data to be passed to

the extension selector.

The Xt Regi st er Ext ensi onSel ect or function registersaprocedureto arrangefor the delivery
of extension events to widgets.

If min_event type and max event type match the parameters to a previous cal to
Xt Regi st er Ext ensi onSel ect or for the same display, then proc and client_data replace the
previously registered values. If the range specified by min_event_type and max_event_type overlaps
the range of the parametersto a previous call for the same display in any other way, an error results.

When a widget is realized, after the core.realize method is called, the Intrinsics check to see if any
event handler specifies an event type within the range of a registered extension selector. If so, the
Intrinsics call each such selector. If an event type handler is added or removed, the Intrinsics check
to see if the event type falls within the range of a registered extension selector, and if it does, calls
the selector. In either case the Intrinsics pass alist of all the widget's event types that are within the
selector'srange. The corresponding select dataare al so passed. The selector isresponsiblefor enabling
the delivery of extension events required by the widget.

An extension selector is of type (* Xt Ext ensi onSel ect Proc) .

t ypedef voi d (* Xt Ext ensi onSel ect Proc) (wi dget, event _types,

sel ect _data, count, client_data);

widget Specifies the widget that is being realized
or is having an event handler added or
removed.

event_types Specifiesalist of event typesthat the widget

has registered event handlersfor.

118

Event Management

select _data Specifies a list of the
select data parameters specified in
Xt |l nsert Event TypeHandl er.

count Specifies the number of entries in the
event_types and select_data lists.

client_data Specifies the additional client data with
which the procedure was registered.

The event_types and select_data lists will always have the same number of elements, specified by
count. Each event type/select data pair represents one call to Xt | nsert Event TypeHandl er .

To register a procedure to dispatch events of a specific type within Xt Di spat chEvent, use
Xt Set Event Di spat cher.

Xt Event Di spat chProc Xt Set Event Di spat cher (di spl ay, event type, proc);

display Specifies the display for which the event
dispatcher is to be registered.

event_type Specifies the event type for which the
dispatcher should be invoked.

proc Specifies the event dispatcher procedure.

The Xt Set Event Di spat cher function registers the event dispatcher procedure specified by proc
for events with the type event_type. The previously registered dispatcher (or the default dispatcher if
there was no previously registered dispatcher) is returned. If proc is NULL, the default procedure is
restored for the specified type.

In the future, when Xt Di spat chEvent is called with an event type of event_type, the specified
proc (or the default dispatcher) isinvoked to determine a widget to which to dispatch the event.

The default dispatcher handles the Intrinsics modal cascade and keyboard focus mechanisms, handles
the semantics of compress_enterleave and compress motion, and discards all extension events.

An event dispatcher procedure pointer is of type (* Xt Event Di spat chProc) .
t ypedef Bool ean (* Xt Event Di spat chProc) (event);
event Passes the event to be dispatched.

The event dispatcher procedure should determine whether this event is of a type that should be
dispatched to awidget.

If the event should be dispatched to a widget, the event dispatcher procedure should determine the
appropriate widget to receive the event, cal XFi | t er Event with the window of this widget, or
None if the event is to be discarded, and if XFi | t er Event returns Fal se, dispatch the event
to the widget using Xt Di spat chEvent ToW dget . The procedure should return Tr ue if either
XFi |t er Event or Xt Di spat chEvent TOW dget returned Tr ue and Fal se otherwise.

If the event should not be dispatched to a widget, the event dispatcher procedure should attempt to
dispatch the event elsewhere as appropriate and return Tr ue if it successfully dispatched the event
and Fal se otherwise.

Some dispatchers for extension events may wish to forward events according to the Intrinsics
keyboard focus mechanism. To determinewhich widget isthe end result of keyboard event forwarding,
use Xt Cet Keyboar dFocusW dget .

W dget Xt Get Keyboar dFocusW dget (w dget) ;

widget Specifies the widget to get forwarding information for.

119

Event Management

The Xt Get Keyboar dFocusW dget function returns the widget that would be the end result of
keyboard event forwarding for a keyboard event for the specified widget.

To dispatch an event to a specified widget, use Xt Di spat chEvent ToW dget .

Bool ean Xt Di spat chEvent ToW dget (w dget, event);

widget Specifies the widget to which to dispatch the event.
event Specifies a pointer to the event to be dispatched.

The Xt Di spat chEvent ToW dget function scans the list of registered event handlers for the
specified widget and calls each handler that has been registered for the specified event type, subject
to the continue_to_dispatch value returned by each handler. The Intrinsics behave as if event
handlers were registered at the head of the list for Expose, NoExpose, G aphi csExpose, and
VisibilityNotify eventsto invoke the widget's expose procedure according to the exposure
compression rules and to update the widget's visible field if visible_interest is Tr ue. These internal
event handlers never set continue_to_dispatch to Fal se.

Xt Di spat chEvent ToOW dget returns True if any event handler was called and Fal se
otherwise.

Using the Intrinsics in a Multi-Threaded
Environment

TheIntrinsics may be used in environments that offer multiple threads of execution within the context
of a single process. A multi-threaded application using the Intrinsics must explicitly initialize the
toolkit for mutually exclusive access by calling Xt Tool kit Threadl nitiali ze.

Initializing a Multi-Threaded Intrinsics Application

To test and initialize Intrinsics support for mutually exclusive thread access, call
Xt Tool kit Threadl nitiali ze.

Bool ean Xt Tool kit Threadlnitialize(void);

Xt Tool ki t Threadl niti alize returns True if the Intrinsics support mutually exclusive
thread access, otherwise it returns Fal se. Xt Tool ki t Threadl niti al i ze must be called
before Xt Cr eat eAppl i cati onCont ext, Xt Appl nitialize, Xt QoenAppl i cation, or
Xt Set LanguagePr oc is caled. Xt Tool ki t Threadl niti al i ze may be called more than
once; however, the application writer must ensure that it is not called simultaneously by two or more
threads.

Locking X Toolkit Data Structures

The Intrinsics employstwo levels of locking: application context and process. Locking an application
context ensures mutually exclusive access by a thread to the state associated with the application
context, including all displays and widgets associated with it. Locking a process ensures mutually
exclusive access by athread to Intrinsics process global data.

A client may acquire a lock multiple times and the effect is cumulative. The client must ensure that
the lock isreleased an equal number of timesin order for the lock to be acquired by another thread.

Most application writers will have little need to use locking as the Intrinsics performs the necessary
locking internally. Resource converters are an exception. They require the application context or
process to be locked before the application can safely call them directly, for example:

120

Event Management

Xt AppLock(app_cont ext);
Xt Cvt StringToPi xel (dpy, args, numargs, fronVal, toVal, closure_ret);
Xt AppUnl ock(app_cont ext);

When the application relies upon Xt Conver t AndSt or e or a converter to provide the storage for
the results of a conversion, the application should acquire the process lock before calling out and hold
the lock until the results have been copied.

Application writers who write their own utility functions, such as one which retrieves the
being_destroyed field from a widget instance, must lock the application context before accessing
widget internal data. For example:

#i ncl ude <X11/ CoreP. h>
Bool ean Bei ngDestroyed (W dget wi dget)

{
Bool ean ret;
Xt AppLock(Xt W dget ToAppl i cati onCont ext (w dget));
ret = w dget->core. being destroyed,;
Xt AppUnl ock(Xt W dget ToAppl i cati onCont ext (w dget));
return ret;

}

A client that wishes to atomically call two or more Intrinsics functions must lock the application
context. For example:

Xt AppLock(Xt W dget ToAppl i cati onCont ext (w dget));
Xt UnmanageChi |l d (wi dget1);

Xt ManageChi | d (wi dget 2);

Xt AppUnl ock(Xt W dget ToAppl i cati onCont ext (w dget));

Locking the Application Context
To ensure mutual exclusion of application context, display, or widget internal state, use Xt AppLock.
voi d Xt AppLock(app_cont ext);
app_context Specifies the application context to lock.

Xt AppLock blocks until it is able to acquire the lock. Locking the application context also ensures
that only the thread holding the lock makes Xlib calls from within Xt. An application that makes
its own direct Xlib calls must either lock the application context around every call or enable thread
locking in Xlib.

To unlock alocked application context, use Xt AppUnl ock.
voi d Xt AppUnl ock(app_cont ext);

app_context Specifies the application context that was
previously locked.

Locking the Process

To ensure mutual exclusion of X Toolkit process global data, a widget writer must use
Xt ProcessLock.

121

Event Management

voi d Xt ProcessLock(void);

Xt ProcessLock blocksuntil it is ableto acquire the lock. Widget writers may use XtProcessL ock
to guarantee mutually exclusive access to widget static data.

To unlock alocked process, use Xt Pr ocessUnl ock.
voi d Xt ProcessUnl ock(void);

To lock both an application context and the process at the sametime, call Xt AppLock first and then
Xt ProcessLock. Torelease both locks, call Xt ProcessUnl ock first and then Xt AppUnl ock.
The order isimportant to avoid deadlock.

Event Management in a Multi-Threaded Environment

In a nonthreaded environment an application writer could reasonably assume that it is safe to exit
the application from a quit callback. This assumption may no longer hold true in a multi-threaded
environment; therefore it is desirable to provide a mechanism to terminate an event-processing loop
without necessarily terminating its thread.

To indicate that the event loop should terminate after the current event dispatch has completed, use
Xt AppSet Exi t Fl ag.

voi d Xt AppSet Exi t Fl ag(app_cont ext);
app_context Specifies the application context.
Xt AppMai nLoop tests the value of the flag and will return if theflagis Tr ue.

Application writers who implement their own main loop may test the value of the exit flag with
Xt AppGet Exi t FI ag.

Bool ean Xt AppGet Exi t Fl ag(app_cont ext);
app_context Specifies the application context.

Xt AppGet Exi t FI ag will normally return Fal se, indicating that event processing may continue.
When Xt AppGet Exi t FI ag returns Tr ue, the loop must terminate and return to the caller, which
might then destroy the application context.

Application writers should be aware that, if a thread is blocked in Xt AppNext Event,
Xt AppPeekEvent , or Xt AppPr ocessEvent and another thread in the same application context
opens a new display, adds an aternate input, or a timeout, any new source(s) will not normally be
“noticed” by the blocked thread. Any new sources are “noticed” the next time one of these functions
iscaled.

The Intrinsics manage access to events on a last-in, first-out basis. If multiple threads in the same
application context block in Xt AppNext Event , Xt AppPeekEvent , or Xt AppPr ocessEvent,
the last thread to call one of these functionsisthe first thread to return.

122

Chapter 8. Callbacks

Applications and other widgets often need to register a procedure with awidget that gets called under
certain prespecified conditions. For example, when a widget is destroyed, every procedure on the
widget's destroy _callbacks list is called to notify clients of the widget's impending doom.

Every widget has an XtNdestroyCallbacks callback list resource. Widgets can define additional
callback lists as they see fit. For example, the Pushbutton widget has a callback list to notify clients
when the button has been activated.

Except where otherwise noted, it is the intent that all Intrinsics functions may be called at any time,
including from within callback procedures, action routines, and event handlers.

Using Callback Procedure and Callback List
Definitions

Callback procedure pointers for usein callback lists are of type (* Xt Cal | backPr oc) .
typedef void (*XtCallbackProc)(w, client_data, call _data);

w Specifies the widget owning the list in
which the callback is registered.

client_data Specifies additional data supplied by the
client when the procedure was registered.

call_data Specifies any callback-specific data the
widget wants to pass to the client. For
example, when Scrollbar executes its
XtNthumbChanged callback list, it passes
the new position of the thumb.

The client_data argument provides a way for the client registering the callback procedure also to
register client-specific data, for example, apointer to additional information about the widget, areason
for invoking the callback, and so on. The client_data value may be NULL if al necessary information
isin the widget. The call_data argument is a convenience to avoid having simple cases where the
client could otherwise always call Xt Get Val ues or awidget-specific function to retrieve datafrom
the widget. Widgets should generally avoid putting complex state information in call_data. The client
can use the more general data retrieval methods, if necessary.

Whenever a client wants to pass a callback list as an argument in an Xt Cr eat eW dget ,
Xt Set Val ues, or Xt Get Val ues call, it should specify the address of a NULL-terminated array
of type Xt Cal | backLi st .

typedef struct {
Xt Cal | backProc call back;
Xt Poi nt er cl osure;
} XtCal |l backRec, *XtCall backLi st;

For example, the callback list for procedures A and B with client data clientDataA and clientDataB,
respectively, is

static XtCall backRec call backs[] = {
{A, (XtPointer) clientDataA},
{B, (XtPointer) clientDataB},
{(XtCal | backProc) NULL, (XtPointer) NULL}

123

Cadlbacks

b

Although callback lists are passed by address in arglists and varargs lists, the Intrinsics recognize
callback lists through the widget resource list and will copy the contents when necessary. Widget
initialize and set_values procedures should not alocate memory for the callback list contents. The
Intrinsics automatically do this, potentially using a different structure for their internal representation.

Identifying Callback Lists

Whenever a widget contains a callback list for use by clients, it aso exportsin its public .h file the
resource name of the callback list. Applications and client widgets never access callback list fields
directly. Instead, they always identify the desired callback list by using the exported resource name.
All the callback manipulation functions described in this chapter except Xt Cal | Cal | backLi st
check to see that the requested callback list isindeed implemented by the widget.

For the Intrinsics to find and correctly handle callback lists, they must be declared with a
resource type of Xt RCal | back. The internal representation of a callback list is implementation-
dependent; widgets may make no assumptions about the value stored in this resource if it is non-
NULL. Except to compare the value to NULL (which is equivalent to Xt Cal | backSt at us
Xt Cal | backHasNone), access to callback list resources must be made through other Intrinsics
procedures.

Adding Callback Procedures

To add a callback procedure to awidget's callback list, use Xt AddCal | back.

voi d Xt AddCal | back(w, call back_name, call back, client_data);

w Specifies the widget. Must be of class
Object or any subclass thereof.

callback_name Specifies the callback list to which the
procedure isto be appended.

callback Specifies the callback procedure.

client_data Specifies additional data to be passed

to the specified procedure when it is
invoked, or NULL.

A callback will be invoked as many times asit occurs in the callback list.
To add alist of callback proceduresto a given widget's callback list, use Xt AddCal | backs.

voi d Xt AddCal | backs(w, call back _nane, call backs);

w Specifies the widget. Must be of class
Object or any subclass thereof.

callback _name Specifies the callback list to which the
procedures are to be appended.

callbacks Specifies the null-terminated list of
callback procedures and corresponding
client data

Removing Callback Procedures

To delete a callback procedure from awidget's callback list, use Xt RenoveCal | back.

124

Cadlbacks

voi d Xt RemoveCal | back(w, callback _nane, call back, client_data);

w Specifies the widget. Must be of class
Object or any subclass thereof.

callback_name Specifiesthe callback list from which the
procedure isto be deleted.

callback Specifies the callback procedure.

client_data Specifiesthe client datato match with the

registered callback entry.

The Xt RemoveCal | back function removes a callback only if both the procedure and the client
data match.

To delete a list of calback procedures from a given widget's callback list, use
Xt RenoveCal | backs.

voi d Xt RenoveCal | backs(w, call back_nane, call backs);

w Specifies the widget. Must be of class
Object or any subclass thereof.

callback_name Specifiesthe callback list from which the
procedures are to be del eted.

callbacks Specifies the null-terminated list of
callback procedures and corresponding
client data.

To delete all callback procedures from a given widget's callback list and free all storage associated
with the callback list, use Xt RenoveAl | Cal | backs.

voi d Xt RenmoveAl | Cal | backs(w, call back_nane);

w Specifies the widget. Must be of class
Object or any subclass thereof.

callback_name Specifies the callback list to be cleared.

Executing Callback Procedures

To execute the procedures in a given widget's callback list, specifying the callback list by resource
name, use Xt Cal | Cal | backs.

void Xt Call Cal |l backs(w, callback nane, call _data);

w Specifies the widget. Must be of class
Object or any subclass thereof.

callback _name Specifiesthe callback list to be executed.

call_data Specifies a callback-list-specific data

value to pass to each of the callback
procedure in the list, or NULL.

Xt Cal | Cal | backs callseach of the callback proceduresin thelist named by callback_nameinthe
specified widget, passing the client data registered with the procedure and call-data.

To execute the procedures in a callback list, specifying the callback list by address, use
Xt Cal | Cal | backLi st .

125

Cadlbacks

voi d Xt Cal |l Cal | backLi st (w dget, call backs, call_data);

widget Specifies the widget instance that contains the
callback list. Must be of class Object or any
subclass thereof.

callbacks Specifies the callback list to be executed.

call_data Specifies a callback-list-specific data value to
passto each of the callback proceduresinthelist,
or NULL.

The callbacks parameter must specify the contents of a widget or object resource declared with
representation type Xt RCal | back. If callbacks is NULL, Xt Cal | Cal | backLi st returns
immediately; otherwise it calls each of the callback proceduresin thelist, passing the client data and
call_data.

Checking the Status of a Callback List

To find out the status of a given widget's callback list, use Xt HasCal | backs.
typedef enum { XtCallbackNoList, XtCallbackHasNone, XtCallbackHasSome} XtCallbackStatus;
Xt Cal | backSt at us Xt HasCal | backs(w, call back_name);

w Specifies the widget. Must be of class
Object or any subclass thereof.

callback _name Specifies the callback list to be checked.

The Xt HasCal | backs function first checks to see if the widget has a calback list
identified by callback name. If the calback list does not exist, Xt HasCal | backs returns
Xt Cal | backNoLi st . If the callback list exists but is empty, it returns Xt Cal | backHasNone.
If the callback list exists and has at |east one callback registered, it returns Xt Cal | backHas Sone.

126

Chapter 9. Resource Management

A resource is afield in the widget record with a corresponding resource entry in the resources list
of the widget or any of its superclasses. This means that the field is settable by Xt Cr eat eW dget
(by naming the field in the argument list), by an entry in a resource file (by using either the name
or class), and by Xt Set Val ues. In addition, it is readable by Xt Get Val ues. Not al fieldsin a
widget record are resources. Some are for bookkeeping use by the generic routines (like managed and
being_destroyed). Others can be for local bookkeeping, and till others are derived from resources
(many graphics contexts and pixmaps).

Widgetstypically need to obtain alarge set of resources at widget creation time. Some of the resources
come from the argument list supplied in the call to Xt Cr eat eW dget , some from the resource
database, and some from the internal defaults specified by the widget. Resources are obtained first
from the argument list, then from the resource database for all resources not specified in the argument
list, and last, from the internal default, if needed.

Resource Lists

A resource entry specifies afield in the widget, the textual name and class of the field that argument
lists and external resource files use to refer to the field, and a default value that the field should get if
no value is specified. The declaration for the Xt Resour ce structureis

typedef struct {

String resour ce_nane;
String resource_cl ass;
String resource_type;
Car di nal resource_si ze;
Car di nal resource_of fset;
String defaul t _type;
Xt Poi nt er defaul t _addr;

} XtResource, *XtResourcelist;

When the resource list is specified as the CoreC assPart, bjectd assPart,
Rect Obj d assPart, or Constrai nt Cl assPart resources field, the strings pointed to by
resource_name, resource class, resource type, and default_type must be permanently allocated
prior to or during the execution of the class initialization procedure and must not be subsequently
deallocated.

The resource_name field contains the name used by clients to access the field in the widget. By
convention, it starts with a lowercase letter and is spelled exactly like the field name, except all
underscores (_) are deleted and the next letter is replaced by its uppercase counterpart. For example,
the resource name for background_pixel becomes backgroundPixel. Resource names beginning with
the two-character sequence“xt”, and resource classes beginning with the two-character sequence “ Xt”
are reserved to the Intrinsics for future standard and implementation-dependent uses. Widget header
filestypically contain asymbolic name for each resource name. All resource names, classes, and types
used by the Intrinsics are named in <X11/ St ri ngDef s. h>. The Intrinsics's symbolic resource
names begin with “XtN” and are followed by the string name (for example, XtNbackgroundPixel for
backgroundPixel).

The resource_class field contains the class string used in resource specification files to identify the
field. A resource class provides two functions:

* It isolates an application from different representations that widgets can use for a similar resource.
* It lets you specify values for several actual resources with a single name. A resource class should
be chosen to span a group of closely related fields.

127

Resource Management

For example, awidget can have several pixel resources: background, foreground, border, block cursor,
pointer cursor, and so on. Typically, the background defaults to white and everything else to black.
The resource class for each of these resources in the resource list should be chosen so that it takes
the minimal number of entriesin the resource database to make the background ivory and everything
else darkblue.

In this case, the background pixel should have aresource class of “Background” and all the other pixel
entries a resource class of “Foreground”. Then, the resource file needs only two lines to change all
pixelsto ivory or darkblue:

*Backgr ound: ivory
*For egr ound: dar kbl ue

Similarly, awidget may have several font resources (such asnormal and bold), but all fontsshould have
the class Font. Thus, changing all fonts simply requires only asingle line in the default resourcefile;

*Font : 6x13

By convention, resource classes are always spelled starting with a capital letter to distinguish them
from resource names. Their symbolic names are preceded with “ XtC” (for example, XtCBackground).

The resource_type field gives the physical representation type of the resource and aso encodes
information about the specific usage of thefield. By convention, it startswith an uppercaseletter and is
spelled identically to the type name of the field. The resource type is used when resources are fetched
to convert from the resource database format (usualy St r i ng) or the format of the resource default
value (almost anything, but often St ri ng) to the desired physical representation (see the section
called “Resource Conversions’). The Intrinsics define the following resource types:

Resource Type Structureor Field Type
Xt RAccel er at or Tabl e XtAccelerators
Xt RAt om Atom

Xt RBi t map Pixmap, depth=1
Xt RBool ean Boolean

Xt RBool Bool

Xt RCal | back XtCallbackList
Xt RCar di nal Cardina

Xt RCol or XColor

Xt RCol or map Colormap

Xt RCommandAr gAr r ay String*

Xt RCur sor Cursor

Xt RDi mensi on Dimension
XtRDi rectoryString String

Xt RDi spl ay Display*

Xt REnum XtEnum

Xt REnvi r onnment Ar r ay String*

XtRFi | e FILE*

Xt RFl oat float

Xt RFont Font

Xt RFont Set XFontSet

Xt RFont St ruct XFontStruct*

128

Resource Management

Resource Type Structureor Field Type
Xt RFunct i on (*)(Widget)

Xt RGeonetry char*, format as defined by XPar seGeonet ry
XtRG avity int
XtRInitial State int

Xt Rl nt int

Xt RLongBool ean long

Xt RObj ect Object

Xt RPi xel Pixel

Xt RPi xmap Pixmap

Xt RPoi nt er XtPointer

Xt RPosi tion Position

Xt RRestart Styl e unsigned char
Xt RScr een Screen*

Xt RShor t short

Xt RSncConn XtPointer

Xt RSt ri ng String

Xt RSt ri ngArray String*
XtRStringTabl e String*

Xt RTransl ati onTabl e XtTranglations
Xt RUnsi gnedChar unsigned char
Xt RVi sual Visual*

Xt RW dget Widget

Xt RW dget C ass WidgetClass
Xt RW dget Li st WidgetList

Xt RW ndow Window

<X11/ St ri ngDef s. h> aso defines the following resource types as a convenience for widgets,
although they do not have any corresponding data type assigned: Xt REdi t Mode, Xt RJusti fy,
and Xt ROri ent ati on.

The resource_size field is the size of the physical representation in bytes; you should specify it as
si zeof (type) so that the compiler fillsin the value. The resource _offset field is the offset in bytes
of the field within the widget. Y ou should use the Xt Of f set OF macro to retrieve this value. The
default_type field is the representation type of the default resource value. If default_type is different
from resource _type and the default value is needed, the resource manager invokes a conversion
procedure from default_typeto resource_type. Whenever possible, the default type should beidentical
to the resource type in order to minimize widget creation time. However, there are sometimes no
values of the type that the program can easily specify. In this case, it should be a value for which the
converter is guaranteed to work (for example, Xt Def aul t For egr ound for apixel resource). The
default_addr field specifiesthe address of the default resource value. Asaspecia case, if default_type
isXt RSt ri ng, thenthevalueinthedefault_addr field isthe pointer to the string rather than a pointer
to the pointer. The default is used if aresource is not specified in the argument list or in the resource
database or if the conversion from the representation type stored in the resource database fails, which
can happen for various reasons (for example, amisspelled entry in aresourcefile).

Two special representation types (XtRImmediate and XtRCallProc) are usable only asdefault resource
types. XtRImmediate indicates that the value in the default_addr field is the actua value of the
resource rather than the address of the value. The value must be in the correct representation
type for the resource, coerced to an Xt Poi nt er. No conversion is possible, since there is no

129

Resource Management

source representation type. XtRCallProc indicates that the value in the default_addr field is a
procedure pointer. This procedure is automatically invoked with the widget, resource offset, and a
pointer to an Xr nval ue in which to store the result. XtRCallProc procedure pointers are of type
(* Xt Resour ceDef aul t Proc).

typedef void (*XtResourceDefaultProc)(w, offset, value);

w Specifies the widget whose resource value is to be
obtained.

offset Specifies the offset of the field in the widget record.

value Specifies the resource value descriptor to return.

The (* Xt Resour ceDef aul t Proc) procedure should fill in the value->addr field with a pointer
to the resource value in its correct representation type.

To get the resource list structure for aparticular class, use Xt Get Resour celi st.

voi d Xt Get Resour celi st (cl ass, resources_return,
num resources_return);

class Specifiesthe object classto be queried. It
must be obj ect Cl ass or any subclass
thereof.

resources return Returns the resource list.

num_resources_return Returns the number of entries in the
resource list.

If Xt Get Resour celi st is called before the class is initiaized, it returns the resource list as
specified inthe classrecord. If itiscalled after the classhasbeeninitialized, Xt Get Resour celLi st
returns a merged resource list that includes the resources for all superclasses. The list returned by
Xt Get Resour celLi st should be freed using Xt Fr ee when it is no longer needed.

To get the constraint resource list structure for a particular widget class, use
Xt Get Constrai nt Resour ceLi st.

voi d Xt Get Const r ai nt Resour celi st (cl ass, resources_return,
num.resources_return);

class Specifiesthe object classto be queried. It
must be obj ect C ass or any subclass
thereof.

resources return Returns the constraint resource list.

num_resources return Returns the number of entries in the

constraint resource list.

If Xt Get Constraint ResourcelList is caled before the widget class is initialized,
the resource list as specified in the widget class Constraint part is returned. |If
Xt Get Constrai nt Resour celLi st is caled after the widget class has been initialized, the
merged resource list for the class and all Constraint superclasses is returned. If the specified
class is not a subclass of constrai nt Wdget Cl ass, *resources return is set to NULL and
*num_resources return is set to zero. The list returned by Xt Get Const r ai nt Resour celLi st
should be freed using Xt Fr ee when it is no longer needed.

The routines Xt Set Val ues and Xt Get Val ues aso use the resource list to set and get widget
state; see the section called “ Obtaining Widget State” and the section called “ Setting Widget State”.

Here is an abbreviated version of apossible resource list for a Label widget:

130

Resource Management

/* Resources specific to Label */
static XtResource resources[] = {
{ Xt Nf or egr ound, Xt CFor eground, XtRPi xel, sizeof (Pixel),
Xt O fset O (Label Rec, | abel.foreground), XtRString, XtDefaultForeground},
{Xt Nf ont, XtCFont, XtRFontStruct, sizeof (XFontStruct?*),
Xt O fset O (Label Rec, label.font), XtRString, XtDefaultFont},
{Xt Nl abel , Xt CLabel, XtRString, sizeof(String),
Xt O fset O (Label Rec, |abel.label), XtRString, NULL},

}

The complete resource name for afield of a widget instance is the concatenation of the application
shell name (from Xt AppCr eat eShel |), theinstance names of all the widget's parents up to the top
of the widget tree, the instance name of the widget itself, and the resource name of the specified field
of the widget. Similarly, the full resource class of afield of awidget instance is the concatenation of
the application class (from Xt AppCr eat eShel |), thewidget classnamesof al thewidget's parents
up to the top of the widget tree, the widget class name of the widget itself, and the resource class of
the specified field of the widget.

Byte Offset Calculations

To determine the byte offset of afield within a structure type, use Xt Of f set O .

Cardinal XtOfsetOf(structure_type, field _nane);

structure_type Specifies a type that is declared as a
structure.

field_name Specifies the name of a member within
the structure.

The Xt O f set Of macro expands to a constant expression that gives the offset in bytes to the
specified structure member from the beginning of the structure. It is normally used to statically
initialize resource lists and is more portable than Xt Of f set , which serves the same function.

To determine the byte offset of afield within a structure pointer type, use Xt O f set .

Cardinal XtOffset(pointer_type, field_name);

pointer_type Specifies a type that is declared as a
pointer to a structure.

field_name Specifies the name of a member within
the structure.

The Xt Of f set macro expands to a constant expression that gives the offset in bytesto the specified
structure member from the beginning of the structure. It may be used to statically initialize resource
lists. Xt Of f set islessportablethan Xt Of f set Of .

Superclass-to-Subclass Chaining of
Resource Lists

The Xt Cr eat eW dget function gets resources as a superclass-to-subclass chained operation.
That is, the resources specified in the obj ect C ass resource list are fetched, then those in
rect Cbj d ass, and so on down to the resources specified for this widget's class. Within a class,
resources are fetched in the order they are declared.

131

Resource Management

Ingeneral, if awidget resourcefield isdeclared in asuperclass, that field isincluded in the superclass's
resource list and need not be included in the subclass's resource list. For example, the Core class
contains a resource entry for background_pixel. Consequently, the implementation of Label need
not also have a resource entry for background pixel. However, a subclass, by specifying a resource
entry for that field in its own resource list, can override the resource entry for any field declared in a
superclass. Thisis most often done to override the defaults provided in the superclass with new ones.
At class initialization time, resource lists for that class are scanned from the superclass down to the
classto look for resources with the same offset. A matching resourcein asubclasswill be reordered to
override the superclass entry. If reordering is necessary, a copy of the superclassresource list is made
to avoid affecting other subclasses of the superclass.

Also at classinitialization time, the Intrinsics produce an internal representation of the resource list to
optimize access time when creating widgets. In order to save memory, the I ntrinsics may overwritethe
storage allocated for the resource list in the class record; therefore, widgets must allocate resource lists
in writable storage and must not access the list contents directly after the class_initialize procedure
has returned.

Subresources

A widget does not do anything to retrieve its own resources; instead, Xt Cr eat eW dget does this
automatically before calling the class initialize procedure.

Somewidgets have subpartsthat are not widgets but for which thewidget would liketo fetch resources.
Such widgets call Xt Get Subr esour ces to accomplish this.

voi d Xt Get Subr esour ces(w, base, nane, cl ass, resour ces,
num resources, args, num.args);

w Specifies the object used to qualify the
subpart resource name and class. Must be
of class Object or any subclass thereof.

base Specifies the base address of the subpart
data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifiestheresourcelist for the subpart.

num_resources Specifies the number of entries in the
resource list.

args Specifies the argument list to override

any other resource specifications.

num args Specifies the number of entries in the
argument list.

The Xt Get Subr esour ces function constructs aname and class list from the application name and
class, the names and classes of all the object's ancestors, and the object itself. Then it appendsto this
list the name and class pair passed in. The resources are fetched from the argument list, the resource
database, or the default valuesin the resourcelist. Then they are copied into the subpart record. If args
isNULL, num_args must be zero. However, if num_argsis zero, the argument list is not referenced.

Xt Get Subr esour ces may overwrite the specified resource list with an equivalent representation
in aninternal format, which optimizes accesstimeif thelist is used repeatedly. The resource list must
be allocated in writable storage, and the caller must not modify the list contents after the call if the
same list is to be used again. Resources fetched by Xt Get Subr esour ces are reference-counted

132

Resource Management

as if they were referenced by the specified object. Subresources might therefore be freed from the
conversion cache and destroyed when the object is destroyed, but not before then.

To fetch resources for widget subparts using varargs lists, use Xt VaGet Subr esour ces.

voi d Xt VaGet Subr esour ces(w, base, nane, cl ass, resour ces,
num resources,);

w Specifies the object used to qualify the
subpart resource name and class. Must be
of class Object or any subclass thereof.

base Specifies the base address of the subpart
data structure into which the resources
will be written.

name Specifies the name of the subpart.

class Specifies the class of the subpart.

resources Specifiestheresourcelist for the subpart.

num_resources Specifies the number of entries in the
resource list.

Specifies the variable argument list
to override any other resource
specifications.

Xt VaGet Subr esour ces isidentical in function to Xt Get Subr esour ces with the args and
num_args parameters replaced by avarargs list, as described in Section 2.5.1.

Obtaining Application Resources

To retrieve resources that are not specific to a widget but apply to the overall application, use
Xt Get Appl i cat i onResour ces.

voi d Xt Get Applicati onResources(w, base, resources, numresources,
args, nhum args);

w Specifies the object that identifies the
resource database to search (the database
isthat associated with the display for this
object). Must be of class Object or any
subclass thereof.

base Specifies the base address into which the
resource values will be written.

resources Specifies the resource list.

num_resources Specifies the number of entries in the
resource list.

args Specifies the argument list to override
any other resource specifications.

num_args Specifies the number of entries in the
argument list.

The Xt Get Appl i cat i onResour ces function first uses the passed object, which is usually an
application shell widget, to construct a resource name and class list. The full name and class of the
specified object (that is, including its ancestors, if any) islogically added to the front of each resource

133

Resource Management

name and class. Then it retrieves the resources from the argument list, the resource database, or the
resource list default values. After adding base to each address, Xt Get Appl i cat i onResour ces
copiestheresourcesinto the addresses obtained by adding baseto each offset intheresourcelist. If args
isNULL, num_args must be zero. However, if num_argsis zero, the argument list is not referenced.
The portable way to specify application resources is to declare them as members of a structure and
pass the address of the structure as the base argument.

Xt Get Appl i cati onResour ces may overwrite the specified resource list with an equivalent
representation in an internal format, which optimizes access time if the list is used repeatedly.
The resource list must be allocated in writable storage, and the caller must not modify the list
contents after the call if the same list is to be used again. Any per-display resources fetched by
Xt Get Appl i cat i onResour ces will not be freed from the resource cache until the display is
closed.

To retrieve resources for the overall application wusing varargs lists, use
Xt VaCGet Appl i cati onResour ces.

voi d Xt VaGet Appl i cat i onResour ces(w, base, resour ces,
numresources,);

w Specifies the object that identifies the
resource database to search (the database
isthat associated with the display for this
object). Must be of class Object or any
subclass thereof.

base Specifies the base address into which the
resource values will be written.

resources Specifiestheresourcelist for the subpart.
num_resources Specifies the number of entries in the
resource list.

Specifies the variable argument list
to override any other resource
specifications.

Xt VaGet Appl i cat i onResour ces is identical in function to
Xt Get Appl i cat i onResour ces with the args and num_args parameters replaced by a varargs
list, as described in Section 2.5.1.

Resource Conversions

The Intrinsics provide a mechanism for registering representation converters that are automatically
invoked by the resource-fetching routines. The Intrinsics additionally provide and register several
commonly used converters. This resource conversion mechanism serves several purposes:

* It permitsuser and application resource filesto contain textual representations of nontextual values.

* Italowstextual or other representations of default resource valuesthat are dependent onthe display,
screen, or colormap, and thus must be computed at runtime.

* It cachesconversion sourceand result data. Conversionsthat require much computation or space (for
example, string-to-tranglation-table) or that require round-trips to the server (for example, string-
to-font or string-to-color) are performed only once.

Predefined Resource Converters

Thelntrinsicsdefine all the representations used in the Object, RectObj, Core, Composite, Constraint,
and Shell widget classes. The Intrinsics register the following resource converters that accept input
values of representation type Xt RSt r i ng.

134

Resource Management

Target Representation Converter Name Additional Args

Xt RAccel erator Tabl e Xt Cvt StringToAccel er at or Tabl e

Xt RAt om Xt Cvt StringToAt om Display*

Xt RBool ean Xt Cvt St ri ngToBool ean

Xt RBool Xt Cvt Stri ngToBool

Xt RCommandAr gArray Xt Cvt Stri ngToCommandAr gAr r ay

Xt RCur sor Xt Cvt StringToCur sor Display*

Xt RDi mensi on Xt Cvt StringToDi mensi on

XtRDirectoryString XtCvtStringToDirectoryString

Xt RDi spl ay Xt Cvt StringToDi spl ay

XtRFile XtCvt StringToFile

Xt RFl oat Xt Cvt StringToFl oat

Xt RFont Xt Cvt St ri ngToFont Display*

Xt RFont Set Xt Cvt St ri ngToFont Set Display*, String locale
Xt RFont St ruct Xt Cvt StringToFont Struct Display*
XtRGavity XtCvt StringToGravity

XtRInitial State XtCvt StringTolnitial State

Xt Rl nt Xt Cvt StringTol nt

Xt RPi xel XtCvt StringToPi xel col or Convert Args
Xt RPosi tion Xt Cvt StringToPosition

Xt RRestart Styl e XtCvt StringToRestart Styl e

Xt RShor t Xt Cvt StringToShort

Xt RTransl ati onTabl e Xt CvtStringToTransl ati onTabl e

Xt RUnsi gnedChar Xt Cvt Stri ngToUnsi gnedChar

Xt RVi sual Xt Cvt StringToVi sual Screen*, Cardinal depth

The String-to-Pixel conversion has two predefined constants that are guaranteed to work and contrast
with each other: Xt Def aul t For egr ound and Xt Def aul t Backgr ound. They evauate to
the black and white pixel values of the widget's screen, respectively. If the application resource
reverseVideo is Tr ue, they evaluate to the white and black pixel values of the widget's screen,
respectively. Similarly, the String-to-Font and String-to-FontStruct converters recognize the constant
Xt Def aul t Font and evaluate this in the following manner:

* Query the resource database for the resource whose full name is “xtDefaultFont”, class
“XtDefaultFont” (that is, no widget name/class prefixes), and use a type Xt RSt ri ng value
returned as the font name or atype Xt RFont or Xt RFont St r uct value directly asthe resource
value.

« |If the resource database does not contain a value for xtDefaultFont, class XtDefaultFont, or if the
returned font name cannot be successfully opened, an implementation-defined font in 1SO8859-1
character set encoding is opened. (One possible algorithm isto perform an XLi st Font s using a
wildcard font name and use the first font in the list. This wildcard font name should be as broad
as possible to maximize the probability of locating a useable font; for example, “- * - *-*- R- *-
o.120-*-*-*-*-] S0B859-1".)

* If no suitable ISO8859-1 font can be found, issue a warning message and return Fal se.

The String-to-FontSet converter recognizes the constant Xt Def aul t Font Set and evaluate thisin
the following manner:

* Query the resource database for the resource whose full name is “xtDefaultFontSet”, class
“XtDefaultFontSet” (that is, no widget name/class prefixes), and use a type Xt RSt ri ng value
returned as the base font name list or atype Xt RFont Set value directly as the resource value.

135

Resource Management

* |If the resource database does not contain a value for xtDefaultFontSet, class XtDefaultFontSet, or
if afont set cannot be successfully created from this resource, an implementation-defined font setis
created. (One possible algorithm is to perform an XCr eat eFont Set using awildcard base font
name. This wildcard base font name should be as broad as possible to maximize the probability of
locating auseable font; for example, “- *-*-*- R-*-*-*_. 120-*-*-*_*")

« If no suitable font set can be created, issue awarning message and return Fal se.

If afont set iscreated but missing_charset_list isnot empty, awarning isissued and the partial font set
isreturned. TheIntrinsicsregister the String-to-FontSet converter with aconversion argument list that
extracts the current process locale at the time the converter isinvoked. This ensures that the converter
isinvoked again if the same conversion isrequired in adifferent locale.

The String-to-Gravity —conversion accepts string values that are the names of
window and bit gravities and their numericad equivalents, as defined in Xib —
C Language X Interfaces ForgetGravity, UnmapGravity, NorthWstGavity,
NorthGravity, NorthEast Gravity, West Gravity, CenterGravity, East Gavity,
Sout hWest Gravity, SouthGravity, SouthEastGavity, and StaticGavity.
Alphabetic caseis not significant in the conversion.

The String-to-CommandArgArray conversion parses a String into an array of strings. White space
characters separate elements of the command line. The converter recognizes the backslash character
“\" as an escape character to alow the following white space character to be part of the array element.

The String-to-DirectoryString conversion recognizes the string “ XtCurrentDirectory” and returns the
result of acall to the operating system to get the current directory.

The String-to-RestartStyle conversion accepts the values Restart!f Running,
Rest art Anyway, Rest art | nmedi at el y, and Rest art Never as defined by the X Session
Management Protocol.

The String-to-InitialState conversion accepts the values Nor nal St ate or | coni cState as
defined by the Inter-Client Communication Conventions Manual.

The String-to-Visual conversion calls XVat chVi sual | nf o using the screen and depth fields from
the core part and returns the first matching Visual on the list. The widget resource list must be certain
to specify any resource of type Xt RVi sual after the depth resource. Theallowed string valuesarethe
visual class names defined in X Window System Protocol, Section 8; St ati cGray, St at i cCol or,
TrueCol or,GrayScal e, PseudoCol or,and Di r ect Col or.

The Intrinsics register the following resource converter that accepts an input value of representation
type Xt RCol or .

Target Representation Converter Name Additional Args
Xt RPi xel Xt Cvt Col or ToPi xel

Thelntrinsicsregister the following resource convertersthat accept input val ues of representation type
Xt Rl nt.

Target Representation Converter Name Additional Args

Xt RBool ean Xt Cvt | nt ToBool ean

Xt RBool Xt Cvt | nt ToBool

Xt RCol or Xt Cvt I nt ToCol or col or Convert Args
Xt RDi mensi on Xt Cvt | nt ToDi mensi on

Xt RFI oat Xt Cvt | nt ToFl oat

Xt RFont Xt Cvt | nt ToFont

Xt RPi xel Xt Cvt | nt ToPi xel

Xt RPi xmap Xt Cvt | nt ToPi xmap

136

Resource Management

Target Representation Converter Name Additional Args
Xt RPosi tion Xt Cvt | nt ToPosi ti on

Xt RShor t Xt Cvt | nt ToShort

Xt RUnsi gnedChar Xt Cvt | nt ToUnsi gnedChar

The Intrinsics register the following resource converter that accepts an input value of representation
type Xt RPi xel .

Target Representation Converter Name Additional Args
Xt RCol or Xt Cvt Pi xel ToCol or

New Resource Converters

Type converters use pointers to Xr nVal ue structures (defined in <X11/ Xr esour ce. h>; see
Section 15.4 in Xlib — C Language X Interface) for input and output values.

t ypedef struct {
unsi gned int size;
XPoi nt er addr;

} Xrnwval ue, *Xrnwval uePtr;

The addr field specifies the address of the data, and the size field gives the total number of significant
bytesinthedata. For valuesof type St r i ng, addr isthe address of thefirst character and sizeincludes
the NUL L -terminating byte.

A resource converter procedure pointer is of type (* Xt TypeConverter).

t ypedef Bool ean (*XtTypeConverter)(display, args, numargs, from
to, converter_data);

display Specifies the display connection with
which this conversion is associated.

args Specifies alist of additional Xr nVal ue
arguments to the converter if additional
context is needed to perform the
conversion, or NULL. For example,
the String-to-Font converter needs the
widget's display, and the String-to-Pixel
converter needs the widget's screen and

colormap.
num_args Specifies the number of entriesin args.
from Specifies the value to convert.
to Specifies a descriptor for alocation into

which to store the converted value.

converter_data Specifies a location into which the
converter may store converter-specific
data associated with this conversion.

The display argument is normally used only when generating error messages, to identify the
application context (with the function Xt Di spl ay ToAppl i cat i onCont ext).

The to argument specifies the size and location into which the converter should store the converted
value. If the addr field is NULL, the converter should allocate appropriate storage and store the size

137

Resource Management

and location into the to descriptor. If the type converter allocates the storage, it remains under the
ownership of the converter and must not be modified by the caller. The type converter is permitted to
use static storage for this purpose, and therefore the caller must immediately copy the data upon return
from the converter. If the addr field isnot NULL, the converter must check the size field to ensure that
sufficient space has been allocated before storing the converted value. If insufficient spaceis specified,
the converter should update the size field with the number of bytes required and return Fal se without
modifying the dataat the specified location. If sufficient spacewasallocated by thecaller, the converter
should update the size field with the number of bytes actually occupied by the converted value. For
converted valuesof type Xt RSt r i ng, thesizeshould includethe NUL L-terminating byte, if any. The
converter may store any value in the location specified in converter_data; this value will be passed to
the destructor, if any, when the resource is freed by the Intrinsics.

The converter must return Tr ue if the conversion was successful and Fal se otherwise. If the
conversion cannot be performed because of an improper source value, awarning message should also
be issued with Xt AppWar ni ngMsg.

Most type converters just take the data described by the specified from argument and return data by
writing into the location specified in the to argument. A few need other information, whichisavailable
inargs. A type converter can invoke another type converter, which allows differing sources that may
convert into acommon intermediate result to make maximum use of the type converter cache.

Note that if an address is written into to->addr, it cannot be that of alocal variable of the converter
because the data will not be valid after the converter returns. Static variables may be used, as in
the following example. If the converter modifies the resource database, the changes affect any in-
progress widget creation, Xt Get Appl i cat i onResour ces, or Xt Get Subr esour ces in an
implementation-defined manner; however, insertion of new entries or changes to existing entries is
allowed and will not directly cause an error.

The following is an example of a converter that takes ast ri ng and convertsit to a Pi xel . Note
that the display parameter is used only to generate error messages; the Scr een conversion argument
isstill required to inform the Intrinsics that the converted value is a function of the particular display
(and colormap).

#def i ne done(type, value) \
{
if (toval->addr != NULL) {
if (tovVal ->size < sizeof (type)) {
toVal - >si ze = sizeof (type);
return Fal se;

}
(type)(toval ->addr) = (val ue);

el se {

static type static_val;

static_val = (value);

toVal - >addr = (XPointer)&static_val;
}
toVal - >si ze = sizeof (type);
return True;

[
e e e e e e -

}

static Bool ean Cvt StringToPi xel (
Display *dpy,
Xrnmval ue *args,
Cardinal *num args,
XrnVal ue *fronval,
XrnVal ue *toVval,
Xt Poi nter *converter data)

138

Resource Management

{
static XColor screenCol or;
XCol or exact Col or;
Screen *screen,
Col or map col or map;
St at us st at us;
if (*numargs != 2)
Xt AppWar ni ngMsg(Xt Di spl ayToAppl i cati onCont ext (dpy),
"wrongParaneters”, "cvtStringToPi xel ™, "XtTool kitError",
"String to pixel conversion needs screen and col ormap arguments”
(String *)NULL, (Cardinal *)NULL);
screen = *((Screen**) args[0].addr);
colormap = *((Col ormap *) args[1].addr);
if (Comparel SOLatinl(str, XtDefaultBackground) == 0) {
*closure_ret = Fal se;
done(Pi xel , Wit ePi xel OF Screen(screen));
}
if (Comparel SOLatinl(str, XtDefaultForeground) == 0) {
*closure_ret = Fal se;
done(Pi xel , Bl ackPi xel O Screen(screen));
}
status = XAl | ocNanedCol or (Di spl ayOr Scr een(scr een),
col ormap, (char*)fronval ->addr,
&screenCol or, &exact Col or);
if (status == 0) {
String parans[1];
Cardi nal num parans = 1;
paranms[0] = (String)fronval ->addr;
Xt AppWar ni ngMsg(Xt Di spl ayToAppl i cati onCont ext (dpy),
"noCol or map",
"cvt StringToPi xel ",
"Xt Tool kitError",
"Cannot allocate colormap entry for \"9%\"",
par ams, &num par ans);
*converter_data = (char *) Fal se;
return Fal se;
} else {
*converter_data = (char *) True;
done(Pi xel , &screenCol or. pi xel) ;
}
}

All type converters should define some set of conversion values for which they are guaranteed to
succeed so these can be used in the resource defaults. Thisissue arises only with conversions, such as
fontsand colors, wherethereisno string representation that all server implementationswill necessarily
recognize. For resourceslikethese, the converter should define asymbolic constant in the same manner
as Xt Def aul t For egr ound, Xt Def aul t Backgr ound, and Xt Def aul t Font .

To alow the Intrinsics to deallocate resources produced by type converters, a resource destructor
procedure may also be provided.

A resource destructor procedure pointer is of type (* Xt Dest r uct or) .

typedef void (*XtDestructor) (app, to, converter_data, ar gs,
num ar gs) ;

app Specifies an application context in which
the resource is being freed.

139

Resource Management

to Specifies a descriptor for the resource
produced by the type converter.

converter_data Specifies the converter-specific data
returned by the type converter.

args Specifies the additional converter
arguments as passed to the type converter
when the conversion was performed.

num_args Specifies the number of entriesin args.

Thedestructor procedureisresponsiblefor freeing the resource specified by theto argument, including
any auxiliary storage associated with that resource, but not the memory directly addressed by the size
and location in the to argument or the memory specified by args.

Issuing Conversion Warnings

The Xt Di spl ayStri ngConver si onWar ni ng procedure is a convenience routine for resource
type converters that convert from string values.

voi d Xt Di spl ayStri ngConver si onWar ni ng(di spl ay, fromval ue, to_type);

display Specifies the display connection with which
the conversion is associated.

from value Specifies the string that could not be
converted.

to_type Specifies the target representation type
requested.

The Xt Di spl aySt ri ngConver si onWar ni ng procedure issues a warning message using
Xt AppWar ni ngvsg with name “conversionError”, type “string”, class “ XtToolkitError”, and the
default message “Cannot convert "from value" to typeto_type”.

Toissueother typesof warning or error messages, thetype converter should use Xt AppWar ni ngMsg
or Xt AppErr or Msg.

To retrieve the application context associated with a given display connection, use
Xt Di spl ayToAppl i cati onCont ext .

Xt AppCont ext Xt Di spl ayToAppl i cati onCont ext (di spl ay) ;
display Specifies an open and initialized display connection.

The Xt Di spl ayToAppl i cati onCont ext function returns the application context in which the
specified display wasinitiaized. If thedisplay isnot knownto the Intrinsics, an error messageisissued.

Registering a New Resource Converter

When registering a resource converter, the client must specify the manner in which the conversion
cacheisto be used when there are multiple callsto the converter. Conversion cache control is specified
viaan Xt CacheType argument.

typedef int XtCacheType;
An Xt CacheType field may contain one of the following values:

Xt CacheNone

140

Resource Management

 Specifies that the results of a previous conversion may not be reused to satisfy any other resource
requests; the specified converter will be called each time the converted value is required.

Xt CacheAl |

 Specifies that the results of a previous conversion should be reused for any resource regquest that
depends upon the same source value and conversion arguments.

Xt CacheByDi spl ay

» Specifies that the results of a previous conversion should be used as for Xt CacheAl | but the
destructor will be called, if specified, if Xt Cl oseDi spl ay is called for the display connection
associated with the converted value, and the value will be removed from the conversion cache.

The quaifier Xt CacheRef Count may be ORed with any of the above values. If
Xt CacheRef Count is specified, calls to Xt Cr eat eW dget, Xt Cr eat eManagedW dget ,
Xt Get Appl i cati onResour ces, and Xt Get Subr esour ces that use the converted value will
be counted. When a widget using the converted value is destroyed, the count is decremented, and, if
the count reaches zero, the destructor procedurewill be called and the converted value will be removed
from the conversion cache.

To register atype converter for all application contexts in a process, use Xt Set TypeConverter,
and to register atype converter in asingle application context, use Xt AppSet TypeConvert er.

voi d Xt Set TypeConverter(fromtype, to_type, converter, convert_args,
num args, cache_type, destructor);

from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the resource type converter
procedure.

convert_args Specifies additional conversion

arguments, or NULL.

num args Specifies the number of entries in
convert_args.
cache_type Specifies whether or not resources

produced by this converter are sharable
or display-specific and when they should
be freed.

destructor Specifies a destroy procedure for
resources produced by this conversion, or
NULL if no additional action is required
to deallocate resources produced by the

converter.
voi d Xt AppSet TypeConvert er (app_cont ext, fromtype, to_type,
converter, convert_args, numargs, cache_type, destructor);
app_context Specifies the application context.
from_type Specifies the source type.
to_type Specifies the destination type.
converter Specifies the resource type converter
procedure.

141

Resource Management

convert_args Specifies additional conversion
arguments, or NULL.

num args Specifies the number of entries in
convert_args.
cache type Specifies whether or not resources

produced by this converter are sharable
or display-specific and when they should
be freed.

destructor Specifies a destroy procedure for
resources produced by this conversion, or
NULL if no additional action is required
to deallocate resources produced by the
converter.

Xt Set TypeConvert er registers the specified type converter and destructor in al application
contexts created by the calling process, including any future application contexts that may be created.
Xt AppSet TypeConvert er registersthe specified type converter in the single application context
specified. If the same from _typeandto_type are specified in multiple callsto either function, the most
recent overrides the previous ones.

For the few type converters that need additional arguments, the Intrinsics conversion mechanism
provides a method of specifying how these arguments should be computed. The enumerated type
Xt Addr essMbde and the structure Xt Conver t Ar gRec specify how each argument is derived.
These aredefinedin<X11/ I ntri nsi c. h>.

typedef enum {
/* address nopde paraneter representation */

Xt Addr ess, /* address */

Xt BaseOr f set [* offset */

Xt | medi at e, /* constant */

Xt Resour ceString, /* resource name string */
Xt Resour ceQuarKk, /* resource name quark */
Xt Wdget BaseO fset, /* offset */

Xt Procedur eAr g /* procedure to call */

} Xt Addr essMode;

typedef struct {
Xt Addr essMode addr ess_node;
Xt Poi nt er address_id;
Car di nal Si ze;

} Xt Convert ArgRec, *XtConvert ArgLi st;

The size field specifies the length of the data in bytes. The address mode field specifies how the
address idfield should beinterpreted. Xt Addr ess causesaddress_id to beinterpreted asthe address
of the data. Xt BaseOf f set causes address id to be interpreted as the offset from the widget
base. Xt | mredi at e causes address id to be interpreted as a constant. Xt Resour ceStri ng
causes address id to be interpreted as the name of a resource that is to be converted into an offset
from the widget base. Xt Resour ceQuar k causes address _id to be interpreted as the result of an
XrnSt ri ngToQuar k conversion on the name of aresource, which isto be converted into an offset
fromthewidget base. Xt W dget BaseOf f set issimilarto Xt BaseCf f set except that it searches
for the closest windowed ancestor if the object isnot of asubclass of Core (see Chapter 12, Nonwidget
Objects). Xt Pr ocedur eAr g specifies that address id is a pointer to a procedure to be invoked
to return the conversion argument. If Xt Pr ocedur eAr g is specified, address_id must contain the
address of afunction of type (* Xt Convert Ar gPr oc) .

typedef void (*XtConvertArgProc) (object, size, value);

142

Resource Management

object Passes the object for which the resource is being
converted, or NULL if the converter was invoked by
Xt Cal | Converter or Xt Di rect Convert.

size Passes a pointer to the size field from the
XtConvertArgRec.
value Passes a pointer to a descriptor into which the procedure

must store the conversion argument.

When invoked, the Xt Conver t Ar gPr oc procedure must derive a conversion argument and store
the address and size of the argument in the location pointed to by value.

In order to permit reentrancy, the Xt Conver t Ar gPr oc should return the address of storage whose
lifetime is no shorter than the lifetime of object. If object is NULL, the lifetime of the conversion
argument must be no shorter than the lifetime of the resource with which the conversion argument is
associated. The Intrinsics do not guarantee to copy this storage but do guarantee not to reference it if
the resource is removed from the conversion cache.

The following example illustrates how to register the Cvt St ri ngToPi xel routine given earlier:

static XtConvertArgRec col orConvertArgs[] = {
{ Xt Wdget BaseO f set,
(Xt Poi nter) Xt O f set (Wdget, core.screen),
si zeof (Screen*)},
{ Xt Wdget BaseO f set,
(Xt Poi nter) Xt O f set (Wdget, core. col ormap),
si zeof (Col or map) }

}s

Xt Set TypeConverter (Xt RString,
Xt RPi xel ,
Cvt StringToPi xel
col or Convert Ar gs,
Xt Nunber (col or Convert Args),
Xt CacheByDi spl ay, NULL);

The conversion argument descriptors colorConvertArgs and screenConvertArg are predefined by
the Intrinsics. Both take the values from the closest windowed ancestor if the object is not of a
subclass of Core. The screenConvertArg descriptor puts the widget’'s screen field into args[0]. The
colorConvertArgs descriptor puts the widget's screen field into argg[0], and the widget’s colormap
field into arg9[1].

Conversion routines should not just put a descriptor for the address of the base of the widget into
argd[0], and use that in the routine. They should pass in the actual values on which the conversion
depends. By keeping the dependencies of the conversion procedure specific, it is more likely that
subsequent conversionswill find what they need in the conversion cache. Thisway the cacheissmaller
and has fewer and more widely applicable entries.

If any conversion arguments of type XtBaseOffset, XtResourceString, XtResourceQuark, and
XtWidgetBaseOffset are specified for conversions performed by XtGetApplicationResources,
XtGetSubresources, XtVaGetApplicationResources, or XtVaGetSubresources, the arguments are
computed with respect to the specified widget, not the base address or resource list specified inthecall.

If the Xt Convert ArgProc modifies the resource database, the changes affect any in-
progress widget creation, Xt Get Appl i cat i onResour ces, or Xt Get Subr esour ces in an
implementation-defined manner; however, insertion of new entries or changes to existing entries are
allowed and will not directly cause an error.

143

Resource Management

Resource Converter Invocation

All resource-fetching routines (for example, Xt Get Subr esour ces,
Xt Get Appl i cat i onResour ces, and so on) call resource convertersif the resource database or
varargs list specifies a value that has a different representation from the desired representation or if
the widget's default resource value representation is different from the desired representation.

To invoke explicit resource conversions, use Xt Conver t AndSt or e or Xt Cal | Converter.

t ypedef Xt Poi nter XtCacheRef;

Bool ean Xt Cal | Converter (display, converter, conversi on_args,
numargs, from to_in_out, cache_ref _return);

display Specifies the display with which the
conversion is to be associated.

converter Specifies the conversion procedure to be
caled.

conversion_args Specifies the additional conversion

arguments needed to perform the
conversion, or NULL.

num args Specifies the number of entries in
conversion_args.

from Specifies a descriptor for the source
value.

to_in_out Returns the converted value.

cache ref return Returns a conversion cacheid.

The Xt Cal | Convert er function looks up the specified type converter in the application context
associated with the display and, if the converter was not registered or was registered with cache type
Xt CacheAl | or Xt CacheByDi spl ay, looks in the conversion cache to see if this conversion
procedure has been called with the specified conversion arguments. If so, it checks the success status
of the prior cal, and if the conversion failed, Xt Cal | Convert er returns Fal se immediately;
otherwise it checks the size specified in the to argument, and, if it is greater than or equal to the
size stored in the cache, copies the information stored in the cache into the location specified by to-
>addr, stores the cache size into to->size, and returns Tr ue. If the size specified in the to argument
is smaller than the size stored in the cache, Xt Cal | Convert er copiesthe cache sizeinto to->size
and returns Fal se. If the converter was registered with cache type Xt CacheNone or ho value was
found in the conversion cache, Xt Cal | Convert er callsthe converter, and if it was not registered
with cache type Xt CacheNone, enters the result in the cache. Xt Cal | Convert er then returns
what the converter returned.

The cache ref_return field specifies storage allocated by the caller in which an opague value will be
stored. If the type converter has been registered with the Xt CacheRef Count modifier and if the
value returned in cache ref return is non-NULL, then the caller should store the cache ref return
value in order to decrement the reference count when the converted value is no longer required. The
cache ref_return argument should be NULL if the caller isunwilling or unable to store the value.

To explicitly decrement the reference counts for resources obtained from Xt Cal | Convert er, use
Xt AppRel easeCacheRef s.

voi d Xt AppRel easeCacheRef s(app_context, refs);

144

Resource Management

app_context Specifies the application context.
refs Specifies the list of cache references to be
released.

Xt AppRel easeCacheRef s decrements the reference count for the conversion entries identified
by the refs argument. This argument is a pointer to a NULL-terminated list of Xt CacheRef vaues.
If any reference count reaches zero, the destructor, if any, will be called and the resource removed
from the conversion cache.

As a convenience to clients needing to explicitly decrement reference counts via a callback
function, the Intrinsics define two callback procedures, Xt Cal | backRel easeCacheRef and
Xt Cal | backRel easeCacheRef Li st .

voi d Xt Cal | backRel easeCacheRef (obj ect, client _data, call _data);

object Specifiesthe object with which theresource
is associated.

client_data Specifies the conversion cache entry to be
released.

call_data Isignored.

This callback procedure may be added to acallback list to release apreviously returned Xt CacheRef
value. When adding the callback, the callback client_data argument must be specified as the value of
the Xt CacheRef datacast to type Xt Poi nt er .

voi d Xt Cal | backRel easeCacheRef Li st (obj ect, client_data, call_data);

object Specifies the object with which the
resources are associated.

client_data Specifies the conversion cache entriesto be
released.

call_data Isignored.

This callback procedure may be added to a callback list to release a list of previously returned
Xt CacheRef values. When adding the callback, the callback client_data argument must be specified
asapointer to aNULL-terminated list of Xt CacheRef values.

To lookup and call aresource converter, copy the resulting value, and free a cached resource when a
widget is destroyed, use Xt Conver t AndSt or e.

Bool ean Xt Convert AndSt or e(obj ect fromtype, from to_type,
to_in_out);

object Specifies the object to use for additiona
arguments, if any are needed, and the destroy
callback list. Must be of class Object or any
subclass thereof.

from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_in_out Specifies a descriptor for storage into which the

converted value will be returned.

145

Resource Management

The Xt Conver t AndSt or e function looks up the type converter registered to convert from type
to to type, computes any additional arguments needed, and then cals Xt Cal | Converter

(or Xt Di rect Convert if an old-style converter was registered with Xt AddConverter or
Xt AppAddConvert er ; see Appendix C) with the from and to_in_out arguments. The to_in_out
argument specifies the size and location into which the converted value will be stored and is passed
directly to the converter. If the location is specified as NULL, it will be replaced with a pointer to
private storage and the sizewill bereturned in the descriptor. The caller isexpected to copy thisprivate
storage immediately and must not modify it in any way. If a non-NULL location is specified, the
caller must allocate sufficient storage to hold the converted value and must also specify the size of
that storage in the descriptor. The size field will be modified on return to indicate the actual size of
the converted data. If the conversion succeeds, Xt Conver t AndSt or e returns Tr ue; otherwise, it
returns Fal se.

Xt Convert AndSt or e adds Xt Cal | backRel easeCacheRef tothedestroyCallback list of the
specified object if the conversion returns an Xt CacheRef value. The resulting resource should not
be referenced after the object has been destroyed.

Xt Cr eat eW dget performs processing equivalent to Xt Conver t AndSt or e when initializing
the object instance. Becausethereisextramemory overhead required to implement reference counting,
clients may distinguish those objects that are never destroyed before the application exits from those
that may be destroyed and whose resources should be deallocated.

To specify whether reference counting is to be enabled for the resources of a particular
object when the object is created, the client can specify a value for the Bool ean resource
XtNinitial ResourcesPersistent, class XtClnitial ResourcesPersistent.

When Xt Cr eat eW dget iscaled, if thisresource isnot specified as Fal se in either the arglist or
theresource database, then the resourcesreferenced by thisobject are not reference-counted, regardless
of how the type converter may have been registered. The effective default valueis Tr ue; thus clients
that expect to destroy one or more objects and want resources deallocated must explicitly specify
Fal se for XtNinitial ResourcesPersistent.

The resources are still freed and destructors called when Xt Cl oseDi spl ay is cadled if the
conversion was registered as Xt CacheByDi spl ay.

Reading and Writing Widget State

Any resource field in a widget can be read or written by a client. On a write operation, the widget
decides what changesit will actually allow and updates all derived fields appropriately.

Obtaining Widget State

To retrieve the current values of resources associated with awidget instance, use Xt Get Val ues.

voi d Xt Get Val ues(object, args, num args);

object Specifiesthe object whose resource values areto be
returned. Must be of class Object or any subclass
thereof.

args Specifies the argument list of name/address pairs

that contain the resource names and the addresses
into which the resource values are to be stored. The
resource hames are widget-dependent.

num_args Specifiesthe number of entriesin the argument list.

The Xt Get Val ues function starts with the resources specified for the Object class and proceeds
down the subclasschain to the class of the object. Thevaluefield of apassed argument list must contain

146

Resource Management

the address into which to copy the contents of the corresponding object instance field. If thefieldisa
pointer type, thelifetime of the pointed-to datais defined by the object class. For the Intrinsics-defined
resources, the following lifetimes apply:

» Not valid following any operation that modifies the resource:
< XtNchildren resource of composite widgets.
 All resources of representation type XtRCallback.
e Remainvalid at least until the widget is destroyed:
» XtNaccelerators, XtNtranslations.
e Remainvalid until the Display is closed:
* XtNscreen.

It is the caller's responsibility to allocate and deallocate storage for the copied data according to the
size of the resource representation type used within the object.

If the class of the object's parent is a subclass of const r ai nt W dget O ass, Xt Get Val ues
then fetches the values for any constraint resources requested. It starts with the constraint resources
specified for const r ai nt W dget Cl ass and proceeds down the subclass chain to the parent's
constraint resources. If the argument list contains a resource name that is not found in any of the
resource lists searched, the value at the corresponding addressis not modified. If any get_values _hook
procedures in the object's class or superclass records are non-NULL, they are called in superclass-
to-subclass order after al the resource values have been fetched by Xt Get Val ues. Findly, if the
object's parent is a subclass of const r ai nt W dget Cl ass, and if any of the parent's class or
superclass records have declared Const r ai nt Cl assExt ensi on records in the Constraint class
part extension field with a record type of NULLQUARK, and if the get values hook field in the
extension record isnon-NULL, Xt Get Val ues callsthe get_values hook proceduresin superclass-
to-subclass order. This permits a Constraint parent to provide nonresource datavia Xt Get Val ues.

Get_values_hook procedures may modify the data stored at the location addressed by the value field,
including (but not limited to) making acopy of datawhose resource representation isapointer. None of
the Intrinsi cs-defined object classes copy datain this manner. Any operation that modifiesthe queried
object resource may invalidate the pointed-to data.

To retrieve the current values of resources associated with a widget instance using varargs lists, use
Xt VaGet Val ues.

voi d Xt VaGet Val ues(object, ...);

object Specifies the object whose resource values are to be
returned. Must be of class Object or any subclassthereof.

Specifies the variable argument list for the resources to
be returned.

Xt VaGet Val ues isidentical infunctionto Xt Get Val ues withtheargsand num_args parameters
replaced by a varargs list, as described in Section 2.5.1. All value entries in the list must specify
pointers to storage allocated by the caller to which the resource value will be copied. It isthe caler's
responsibility to ensure that sufficient storage is allocated. If Xt VaTypedAr g is specified, the type
argument specifies the representation desired by the caller and the size argument specifies the number
of bytes allocated to store the result of the conversion. If the size is insufficient, a warning message
isissued and thelist entry is skipped.

Widget Subpart Resource Data: The get_values _hook Procedure
Widgets that have subparts can return resource values from them through Xt Get Val ues
by supplying a get values hook procedure. The get values hook procedure pointer is of type
(*Xt ArgsProc).

typedef void (*XtArgsProc)(w, args, num.args);

147

Resource Management

w Specifiesthe widget whose subpart resource values
areto beretrieved.

args Specifies the argument list that was passed to
Xt Get Val ues or the transformed varargs list
passed to Xt VaGet Val ues.

num args Specifiesthe number of entriesinthe argument list.

Thewidget with subpart resources should call Xt Get Subval ues intheget values hook procedure
and pass in its subresource list and the args and num_args parameters.

Widget Subpart State

To retrieve the current values of subpart resource data associated with a widget instance, use
Xt Get Subval ues. For adiscussion of subpart resources, see the section called “ Subresources”.

voi d Xt Get Subval ues(base, resources, numresources, args, numargs);

base Specifies the base address of the subpart
data structure for which the resources
should be retrieved.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the
resource list.

args Specifies the argument list of name/

address pairs that contain the resource
names and the addresses into which the
resource values are to be stored.

num_args Specifies the number of entries in the
argument list.

The Xt Get Subval ues function obtains resource values from the structure identified by base. The
value field in each argument entry must contain the address into which to store the corresponding
resource value. It is the caller's responsibility to allocate and deall ocate this storage according to the
size of the resource representation type used within the subpart. If the argument list contains aresource
name that is not found in the resource list, the value at the corresponding address is not modified.

To retrieve the current values of subpart resources associated with a widget instance using varargs
lists, use Xt VaGet Subval ues.

voi d Xt VaGet Subval ues(base, resources, numresources, ...);

base Specifies the base address of the subpart
data structure for which the resources
should be retrieved.

resources Specifies the subpart resource list.
num_resources Specifies the number of entries in the
resource list.

Specifies a variable argument list of
name/address pairs that contain the
resource names and the addresses into
which the resource values are to be
stored.

148

Resource Management

Xt VaGet Subval ues isidentical in function to Xt Get Subval ues with the args and num_args
parameters replaced by avarargslist, asdescribed in Section 2.5.1. Xt VaTypedAr g isnot supported
for Xt VaGet Subval ues. If Xt VaTypedAr g is specified in the list, awarning message is issued
and the entry is then ignored.

Setting Widget State

To modify the current values of resources associated with awidget instance, use Xt Set Val ues.
voi d Xt Set Val ues(obj ect, args, num args);

object Specifies the object whose resources are to be
modified. Must be of class Object or any subclass
thereof.

args Specifiesthe argument list of name/value pairs that
contain the resources to be modified and their new
values.

num_args Specifiesthe number of entriesin the argument list.

The Xt Set Val ues function starts with the resources specified for the Object class fields and
proceeds down the subclass chain to the object. At each stage, it replaces the object resource fields
with any values specified in the argument list. Xt Set Val ues then calls the set_values procedures
for the object in superclass-to-subclass order. If the object hasany non-NULL set_values _hook fields,
these are called immediately after the corresponding set_values procedure. This procedure permits
subclasses to set subpart datavia Xt Set Val ues.

If the class of the object's parent is a subclass of const rai nt W dget d ass, Xt Set Val ues
aso updates the object's constraints. It starts with the constraint resources specified for
constrai nt Wdget d ass and proceeds down the subclass chain to the parent's class. At each
stage, it replaces the constraint resource fields with any values specified in the argument list. It then
calls the constraint set_values procedures from const r ai nt W dget Cl ass down to the parent's
class. The constraint set_values procedures are called with widget arguments, as for all set_values
procedures, not just the constraint records, so that they can make adjustments to the desired values
based on full information about the widget. Any arguments specified that do not match aresource list
entry are silently ignored.

If the object is of a subclass of RectObj, Xt Set Val ues determines if a geometry request is
needed by comparing the old object to the new object. If any geometry changes are required,
Xt Set Val ues restores the original geometry and makes the request on behalf of the widget. If the
geometry manager returns Xt Geonet r yYes, Xt Set Val ues calls the object's resize procedure.
If the geometry manager returns Xt Geonet r yDone, Xt Set Val ues continues, as the object's
resi ze procedure should have been called by the geometry manager. If the geometry manager returns
Xt Geonret r yNo, Xt Set Val ues ignores the geometry request and continues. If the geometry
manager returns Xt Geonet r yAl nost, Xt Set Val ues calls the set_values amost procedure,
which determineswhat should be done. Xt Set Val ues then repeatsthis process, deciding once more
whether the geometry manager should be called.

Finally, if any of theset_valuesproceduresreturned Tr ue, and thewidget isrealized, Xt Set Val ues
causes the widget's expose procedure to beinvoked by calling XCl ear Ar ea on thewidget'swindow.

To modify the current values of resources associated with a widget instance using varargs lists, use
Xt VaSet Val ues.

voi d Xt VaSet Val ues(object, ...);

object Specifies the object whose resources are to be modified.
Must be of class Object or any subclass thereof.

149

Resource Management

Specifies the variable argument list of name/value pairs
that contain the resources to be modified and their new
values.

Xt VaSet Val ues isidentica infunctionto Xt Set Val ues withtheargsand nhum_args parameters
replaced by avarargs list, as described in Section 2.5.1.

Widget State: The set_values Procedure
The set_values procedure pointer in awidget classis of type (* Xt Set Val uesFunc) .

typedef Bool ean (*XtSetVal uesFunc)(current, request, new, args,

num ar gs) ;

current Specifies a copy of the widget as it was before the
Xt Set Val ues call.

request Specifies a copy of the widget with al values
changed as asked for by the Xt Set Val ues call
before any class set_values procedures have been
caled.

new Specifies the widget with the new values that are
actually allowed.

args Specifies the argument list passed to
Xt Set Val ues or the transformed argument list
passed to Xt VaSet Val ues.

num args Specifiesthe number of entriesin the argument list.

The set_values procedure should recompute any field derived from resources that are changed (for
example, many GCs depend on foreground and background pixels). If no recomputation is necessary,
and if none of the resources specific to a subclass require the window to be redisplayed when their
values are changed, you can specify NULL for the set_valuesfield in the class record.

Liketheinitialize procedure, set_values mostly deals only with the fields defined in the subclass, but
it hasto resolve conflicts with its superclass, especially conflicts over width and height.

Sometimes a subclass may want to overwrite values filled in by its superclass. In particular, size
calculations of a superclass are often incorrect for a subclass, and, in this case, the subclass must
modify or recalculate fields declared and computed by its superclass.

As an example, a subclass can visually surround its superclass display. In this case, the width and
height calculated by the superclass set_values procedure are too small and need to be incremented
by the size of the surround. The subclass needs to know if its superclass's size was calculated by
the superclass or was specified explicitly. All widgets must place themselves into whatever size is
explicitly given, but they should compute areasonable sizeif no sizeisrequested. How doesasubclass
know the difference between a specified size and a size computed by a superclass?

Therequest and new parameters provide the necessary information. Therequest widget isacopy of the
widget, updated as originally requested. The new widget startswith the valuesin the request, but it has
additionally been updated by all superclass set_values procedures called so far. A subclass set values
procedure can compare these two to resolve any potentia conflicts. The set_values procedure need not
refer to the request widget unless it must resolve conflicts between the current and new widgets. Any
changes the widget needs to make, including geometry changes, should be made in the new widget.

In the above example, the subclass with the visual surround can see if the width and height in the
request widget are zero. If so, it addsits surround size to the width and height fieldsin the new widget.
If not, it must make do with the size originally specified. In this case, zero is a specia value defined
by the class to permit the application to invoke this behavior.

150

Resource Management

The new widget isthe actual widget instance record. Therefore, the set_values procedure should do all
itswork on the new widget; the request widget should never be modified. If the set_values procedure
needs to call any routines that operate on awidget, it should specify new as the widget instance.

Before calling the set_values procedures, the Intrinsics modify the resources of the request widget
according to the contents of the arglist; if the widget names all its resources in the class resource list,
it is never necessary to examine the contents of args.

Finally, the set_values procedure must return a Boolean that indicates whether the widget needs to be
redisplayed. Note that a change in the geometry fields alone does not require the set_values procedure
to return Tr ue; the X server will eventually generate an Expose event, if necessary. After calling
all the set_values procedures, Xt Set Val ues forces aredisplay by caling XCl ear Ar ea if any of
the set_values procedures returned Tr ue. Therefore, a set_values procedure should not try to do its
own redisplaying.

Set_values procedures should not do any work in response to changes in geometry because
Xt Set Val ues eventually will perform a geometry request, and that request might be denied. If the
widget actually changes size in response to a call to Xt Set Val ues, its resize procedure is called.
Widgets should do any geometry-related work in their resize procedure.

Notethat itispermissibleto call Xt Set Val ues beforeawidget isrealized. Therefore, the set_values
procedure must not assume that the widget is realized.

Widget State: The set_values_almost Procedure
The set_values_almost procedure pointer in the widget classrecord is of type (* Xt Al npst Proc) .
typedef void (*XtAl nostProc)(old, new, request, reply);

old Specifies a copy of the object as it was before the
Xt Set Val ues call.

new Specifies the object instance record.

request Specifies the origina geometry request that
was sent to the geometry manager that caused
Xt Geonret r yAl nost to be returned.

reply Specifies the compromise geometry that was
returned by the geometry manager with
Xt Geonet r yAl nost.

Most classes inherit the set values amost procedure from their superclass by specifying
Xt I nherit Set Val uesAl nost in the class initidization. The set_values amost procedure in
rect Cbj d ass accepts the compromise suggested.

The set_values almost procedure is called when a client tries to set a widget's geometry by means
of acall to Xt Set Val ues and the geometry manager cannot satisfy the request but instead returns
Xt Geonret r yNo or Xt Geonet r yAl nbst and a compromise geometry. The new object is the
actual instance record. The x, y, width, height, and border_width fields contain the original values as
they were before the Xt Set Val ues call, and al other fields contain the new values. The request
parameter containsthe new geometry request that was madeto the parent. Thereply parameter contains
reply->regquest_mode equal to zero if the parent returned Xt Geonet r yNo and contains the parent's
compromise geometry otherwise. The set_values almost procedure takes the original geometry and
the compromise geometry and determinesif the compromiseis acceptable or whether to try adifferent
compromise. It returns its results in the request parameter, which is then sent back to the geometry
manager for another try. To accept the compromise, the procedure must copy the contents of the
reply geometry into the request geometry; to attempt an aternative geometry, the procedure may
modify any part of the request argument; to terminate the geometry negotiation and retain the original

151

Resource Management

geometry, the procedure must set request->request_mode to zero. The geometry fields of the old and
new instances must not be modified directly.

Widget State: The ConstraintClassPart set_values Procedure

The constraint set_values procedure pointer isof type(* Xt Set Val uesFunc) . Thevaluespassed to
the parent's constraint set_values procedure are the same as those passed to the child's class set_values
procedure. A class can specify NULL for the set_values field of the Const r ai nt Part if it need
not compute anything.

The constraint set_values procedure should recompute any constraint fields derived from constraint
resources that are changed. Furthermore, it may modify other widget fields as appropriate. For
example, if a constraint for the maximum height of a widget is changed to a value smaller than the
widget's current height, the constraint set_values procedure may reset the height field in the widget.

Widget Subpart State

To set the current values of subpart resources associated with a widget instance, use
Xt Set Subval ues. For adiscussion of subpart resources, see the section called “ Subresources”.

voi d Xt Set Subval ues(base, resources, numresources, args, numargs);
base Specifies the base address of the subpart

data structure into which the resources
should be written.

resources Specifies the subpart resource list.

num_resources Specifies the number of entries in the
resource list.

args Specifiesthe argument list of name/value

pairs that contain the resources to be
modified and their new values.

num_args Specifies the number of entries in the
argument list.

The Xt Set Subval ues function updates the resource fields of the structure identified by base. Any
specified arguments that do not match an entry in the resource list are silently ignored.

To set the current values of subpart resources associated with a widget instance using varargs lists,
use Xt VaSet Subval ues.

voi d Xt VaSet Subval ues(base, resources, numresources,);
base Specifies the base address of the subpart

data structure into which the resources
should be written.

resources Specifies the subpart resource list.
num_resources Specifies the number of entries in the
resource list.

Specifies the variable argument list
of name/value pairs that contain the
resources to be modified and their new
values.

152

Resource Management

Xt VaSet Subval ues isidentical in function to Xt Set Subval ues with the args and num_args
parameters replaced by avarargslist, asdescribed in Section 2.5.1. Xt VaTypedAr g isnot supported
for Xt VaSet Subval ues. If anentry containing Xt VaTy pedAr g isspecified inthelist, awarning
message is issued and the entry isignored.

Widget Subpart Resource Data: The set_values_hook Procedure

Note

The set_values hook procedure is obsolete, as the same information is now available to

the set_values procedure. The procedure has been retained for those widgets that used it in
versions prior to Release 4.

Widgetsthat have asubpart can set the subpart resource values through Xt Set Val ues by supplying
a set_values hook procedure. The set_values hook procedure pointer in a widget class is of type
(* Xt ArgsFunc) .

t ypedef Bool ean (*Xt ArgsFunc)(w, args, num. args);

w Specifiesthe widget whose subpart resource values
are to be changed.

args Specifies the argument list that was passed to
Xt Set Val ues or the transformed varargs list
passed to Xt VaSet Val ues.

num_args Specifiesthe number of entriesin the argument list.

The widget with subpart resourcesmay call Xt Set Val ues fromtheset values hook procedure and
pass in its subresource list and the args and num_args parameters.

153

Chapter 10. Translation Management

Except under unusual circumstances, widgets do not hardwire the mapping of user eventsinto widget
behavior by using the event manager. Instead, they provide adefault mapping of eventsinto behavior
that you can override.

Thetranslation manager providesan interfaceto specify and manage the mapping of X event sequences
into widget-supplied functionality, for example, calling procedure Abc when the y key is pressed.

The translation manager uses two kinds of tables to perform trandations:

» Theactiontables, which areinthewidget class structure, specify the mapping of externally available
procedure name strings to the corresponding procedure implemented by the widget class.

A trandation table, which isin the widget class structure, specifies the mapping of event sequences
to procedure name strings.

You can override the trandation table in the class structure for a specific widget instance by
supplying a different trandlation table for the widget instance. The resources XtNtrandations and
XtNbaseTrandations are used to modify the class default translation table; see the section called
“Trandation Table Management”.

Action Tables

All widget class records contain an action table, an array of Xt Act i onsRec entries. In addition, an
application can register its own action tables with the translation manager so that the trand ation tables
it provides to widget instances can access application functionality directly. The trandation action
procedure pointer is of type (* Xt Acti onProc) .

typedef void (*XtActionProc)(w, event, parans, num parans);

w Specifies the widget that caused the action to
be called.
event Specifiesthe event that caused the action to be

called. If the action is called after a sequence
of events, then the last event in the sequence
isused.

params Specifies a pointer to the list of strings that
were specified in the trandation table as
arguments to the action, or NULL.

num_params Specifies the number of entriesin params.

typedef struct _XtActionsRec {
String string;
Xt Acti onProc proc;

} XtActionsRec, *XtActionList;

The string field is the name used in tranglation tables to access the procedure. The proc field is a
pointer to a procedure that implements the functionality.

When the action list isspecified asthe Cor ed assPar t actionsfield, the string pointed to by string
must be permanently allocated prior to or during the execution of the class initialization procedure
and must not be subsequently deall ocated.

Action procedures should not assume that the widget in which they are invoked is realized; an
accelerator specification can cause an action procedure to be called for awidget that does not yet have

154

Trandation Management

awindow. Widget writers should also note which of awidget's callback lists are invoked from action
procedures and warn clients not to assume the widget is realized in those callbacks.

For example, a Pushbutton widget has procedures to take the following actions:

» Set the button to indicate it is activated.

» Unset the button back to its normal mode.

* Highlight the button borders.

» Unhighlight the button borders.

* Notify any callbacks that the button has been activated.

The action table for the Pushbutton widget class makes these functions available to trand ation tables
written for Pushbutton or any subclass. The string entry is the name used in translation tables.
The procedure entry (usualy spelled identically to the string) is the name of the C procedure that
implements that function:

Xt ActionsRec actionTable[] = {

{"Set", Set },
{"Unset", Unset },
{"Highlight", Hi ghlight},
{" Unhi ghlight", Unhighlight}
{"Notify", Noti fy},

}s

The Intrinsics reserve all action names and parameters starting with the characters “Xt” for future
standard enhancements. Users, applications, and widgets should not declare action names or pass
parameters starting with these characters except to invoke specified built-in Intrinsics functions.

Action Table Registration

The actions and num_actions fields of Cor eCl assPart specify the actions implemented by a
widget class. These are automatically registered with the Intrinsics when the class is initialized and
must be allocated in writable storage prior to Core class_part initialization, and never deallocated. To
save memory and optimize access, the Intrinsics may overwrite the storage in order to compile the
list into an internal representation.

To declare an action table within an application and register it with the translation manager, use
Xt AppAddActi ons.

voi d Xt AppAddActi ons(app_context, actions, num actions);

app_context Specifies the application context.

actions Specifies the action table to register.

num_actions Specifiesthenumber of entriesinthisaction
table.

If more than one action is registered with the same name, the most recently registered action is used.
If duplicate actions exist in an action table, the first is used. The Intrinsics register an action table
containing Xt MenuPopup and Xt MenuPopdown aspart of Xt Cr eat eAppl i cat i onCont ext .

Action Names to Procedure Translations

The trandation manager uses a ssimple agorithm to resolve the name of a procedure specified in a
trang ation tableinto the actual procedure specified in an action table. When the widget isrealized, the
trangl ation manager performs a search for the name in the following tables, in order:

e Thewidget's class and all superclass action tables, in subclass-to-superclass order.

155

Trandation Management

e The parent's class and all superclass action tables, in subclass-to-superclass order, then on up the
ancestor tree.

e The action tables registered with Xt AppAddAct i ons and Xt AddAct i ons from the most
recently added table to the oldest table.

As soon as it finds a name, the tranglation manager stops the search. If it cannot find a name, the
trandlation manager generates a warning message.

Action Hook Registration

An application can specify a procedure that will be caled just before every action routine is
dispatched by the translation manager. To do so, the application supplies a procedure pointer of type
(*Xt Acti onHookPr oc) .

t ypedef void (*XtActi onHookProc)(w, client_data, action_nane, event,
parans, num_parans);

w Specifies the widget whose action is about
to be dispatched.
client_data Specifies the application-specific

closure that was passed to
Xt AppAddAct i onHook.

action_name Specifies the name of the action to be
dispatched.
event Specifies the event argument that will be

passed to the action routine.

arams ecifies the action parameters will be
p fies the action p eters that will b
passed to the action routine.

num_params Specifies the number of entriesin params.

Action hooks should not modify any of the data pointed to by the arguments other than the client_data
argument.

To add an action hook, use Xt AppAddAct i onHook.

Xt Act i onHookl d Xt AppAddAct i onHook(app, proc, client_data);

app Specifies the application context.

proc Specifies the action hook procedure.

client_data Specifies application-specific data to be
passed to the action hook.

Xt AppAddAct i onHook adds the specified procedure to the front of a list maintained in the
application context. In the future, when an action routine is about to be invoked for any widget in this
application context, either through the translation manager or via Xt Cal | Act i onPr oc, the action
hook procedureswill be called in reverse order of registration just prior to invoking the action routine.

Action hook procedures are removed automatically and the Xt Act i onHookl! d i s destroyed when
the application context in which they were added is destroyed.

To remove an action hook procedure without destroying the application context, use
Xt RenpbveAct i onHook.

voi d Xt RenpveAct i onHook(id);

156

Trandation Management

id Specifies the action hook id returned by
Xt AppAddAct i onHook.

Xt RenpbveAct i onHook removes the specified action hook procedure from the list in which it was
registered.

Translation Tables

All widget instance records contain a tranglation table, which is a resource with a default value
specified elsewhereintheclassrecord. A trand ation tabl e specifieswhat action proceduresareinvoked
for an event or a sequence of events. A trandation table is a string containing a list of trandations
from an event sequence into one or more action procedure calls. The trandlations are separated from
one another by newline characters (ASCII LF). The complete syntax of translation tablesis specified
in Appendix B.

As an example, the default behavior of Pushbuttonis

* Highlight on enter window.

» Unhighlight on exit window.

* Invert on left button down.

 Cadl callbacks and reinvert on left button up.

The following illustrates Pushbutton's default trandl ation table:

static String defaultTranslations =
" <Ent er W ndow>: Hi ghl i ght ()\ n\
<LeaveW ndow>: Unhi ghl i ght () \ n\
<Bt n1Down>: Set ()\ n\
<Bt n1Up>: Notify() Unset()";

The tm_table field of the Cor e assPart should be filled in at class initialization time with the
string containing the class's default trangdations. If aclass wants to inherit its superclass's translations,
it can store the specia value Xt I nherit Transl ati ons into tm table. In Core's class part
initialization procedure, the Intrinsics compile this trandation table into an efficient internal form.
Then, at widget creation time, this default trandlation table is combined with the XtNtrandations and
XtNbaseT ranglations resources; see the section called “Translation Table Management”.

The resource conversion mechanism automatically compiles string transl ation tables that are specified
in the resource database. If a client uses trandation tables that are not retrieved via a resource
conversion, it must compile them itself using Xt Par seTr ansl at i onTabl e.

The Intrinsics use the compiled form of the translation table to register the necessary events with the
event manager. Widgets need do nothing other than specify the action and trandlation tablesfor events
to be processed by the translation manager.

Event Sequences

An event sequenceisacomma-separated list of X event descriptionsthat describes a specific sequence
of X events to map to a set of program actions. Each X event description consists of three parts: The
X event type, aprefix consisting of the X modifier bits, and an event-specific suffix.

Various abbreviations are supported to make translation tables easier to read. The events must match
incoming eventsin left-to-right order to trigger the action sequence.

Action Sequences

Action sequences specify what program or widget actions to take in response to incoming X events.
An action sequence consists of space-separated action procedure call specifications. Each action

157

Trandation Management

procedure call consists of the name of an action procedure and a parenthesized list of zero or more
comma-separated string parameters to pass to that procedure. The actions are invoked in left-to-right
order as specified in the action sequence.

Multi-Click Time

Tranglation table entries may specify actions that are taken when two or more identical events occur
consecutively within a short time interval, called the multi-click time. The multi-click time value
may be specified as an application resource with name “ multiClickTime” and class“MultiClickTime”
and may aso be modified dynamically by the application. The multi-click time is unique for each
Display value and isretrieved from the resource database by Xt Di spl ayl ni ti al i ze. If novalue
is specified, theinitial valueis 200 milliseconds.

To set the multi-click time dynamically, use Xt Set Mul ti C i ckTi ne.

void XtSetMiltidickTime(display, tinme);

display Specifies the display connection.

time Specifies the multi-click timein milliseconds.

Xt Set Mul ti i ckTi ne sets the time interval used by the translation manager to determine
when multiple events are interpreted as a repeated event. When a repeat count is specified in a
trangdlation entry, the interval between the timestamps in each pair of repeated events (e.g., between
two But t onPr ess events) must be less than the multi-click timein order for the tranglation actions
to be taken.

To read the multi-click time, use Xt Get Mul ti Cl i ckTi ne.
int XtGetMiltidickTime(display);
display Specifies the display connection.

Xt Get Mul ti i ckTi me returns the time in milliseconds that the translation manager uses to
determine if multiple events are to be interpreted as a repeated event for purposes of matching a
trandlation entry containing arepeat count.

Translation Table Management

Sometimes an application needs to merge its own tranglations with a widget's trandlations. For
example, awindow manager provides functions to move a window. The window manager wishes to
bind this operation to a specific pointer button in the title bar without the possibility of user override
and bind it to other buttons that may be overridden by the user.

Toaccomplish this, the window manager should first createthetitle bar and then should merge the two
trandlation tables into the title bar's translations. One trandl ation table contains the trand ations that the
window manager wants only if the user has not specified a translation for a particular event or event
sequence (i.e., those that may be overridden). The other translation table contains the translations that
the window manager wants regardless of what the user has specified.

Three Intrinsics functions support this merging:

XtParseTrandationTable Compiles atranglation table.

XtAugmentTranslations Merges a compiled trandation table
into a widget's compiled translation

table, ignoring any new translations that
conflict with existing trandations.

158

Trandation Management

XtOverrideTrandlations Merges a compiled trandation table into
a widget's compiled trandation table,
replacing any existing trandlations that
conflict with new trandlations.

To compile atrandation table, use Xt Par seTr ansl at i onTabl e.
Xt Transl ati ons Xt ParseTransl ati onTabl e(tabl e);
table Specifies the trandlation table to compile.

TheXt Par seTr ansl at i onTabl e function compilesthe translation table, provided in the format
given in Appendix B, into an opague internal representation of type Xt Tr ansl ati ons. Note
that if an empty trandation table is required for any purpose, one can be obtained by calling
Xt Par seTr ansl at i onTabl e and passing an empty string.

To mergeadditional trandationsinto an existing translation table, use Xt Augnent Tr ansl at i ons.
voi d Xt Augnent Transl ati ons(w, translations);

w Specifies the widget into which the new
tranglations are to be merged. Must be of
class Core or any subclass thereof.

tranglations Specifies the compiled trandation table
to mergein.

The Xt Augnent Tr ansl at i ons function merges the new trandations into the existing widget
trandations, ignoring any #r epl ace, #augment, or #overri de directive that may have been
specified in the trandation string. The translation table specified by trandlations is not altered by
this process. Xt Augrent Tr ansl at i ons logically appends the string representation of the new
tranglations to the string representation of the widget's current trandations and reparses the result
with no warning messages about duplicate left-hand sides, then stores the result back into the widget
instance; i.e., if the new translations contain an event or event sequence that already exists in the
widget's tranglations, the new trandation is ignored.

To overwrite existing tranglations with new trandations, use Xt Over ri deTr ansl ati ons.
voi d Xt OverrideTransl ati ons(w, translations);

w Specifies the widget into which the new
tranglations are to be merged. Must be of
class Core or any subclass thereof.

trandlations Specifies the compiled trandlation table
to mergein.

The Xt Overri deTransl at i ons function merges the new tranglations into the existing widget
trandations, ignoring any #r epl ace, #augnment, or #overri de directive that may have been
specified in the trandation string. The trandation table specified by translations is not altered by this
process. Xt Overri deTransl ati ons logically appends the string representation of the widget's
current trandations to the string representation of the new translations and reparses the result with no
warning messages about duplicate left-hand sides, then stores the result back into the widget instance;
i.e., if the new tranglations contain an event or event sequence that already exists in the widget's
trandlations, the new translation overrides the widget's transl ation.

To replace a widget's translations completely, use Xt Set Val ues on the XtNtrandations resource
and specify acompiled trandation table as the value.

To make it possible for users to easily modify trandation tables in their resource files, the string-to-
trandl ation-table resource type converter allows the string to specify whether the table should replace,

159

Trandation Management

augment, or override any existing trandation table in the widget. To specify this, a pound sign (#)
is given as the first character of the table followed by one of the keywords “replace”, “augment”, or
“override’ toindicate whether to replace, augment, or override the existing table. Thereplace or merge
operation is performed during the Core instance initialization. Each merge operation produces a new
trandation resource value; if the original tables were shared by other widgets, they are unaffected. If

no directive is specified, “#replace” is assumed.

At instance initialization the XtNtranslations resource is first fetched. Then, if it was not specified or
did not contain “#replace”, the resource database is searched for the resource XtNbaseTranglations.
If XtNbaseTrandationsisfound, it is merged into the widget class translation table. Then the widget
tranglations field is merged into the result or into the class trandlation table if XtNbaseTrandations
was not found. Thisfinal table isthen stored into the widget trandations field. If the XtNtranslations
resource specified “#replace”’, no merge is done. If neither XtNbaseTranslations or XtNtrandations
are specified, the class tranglation table is copied into the widget instance.

To completely remove existing trandations, use Xt Uni nst al | Transl ati ons.
voi d Xt Uninstall Transl ati ons(w);

w Specifies the widget from which the trandlations are to be removed.
Must be of class Core or any subclass thereof.

The Xt Uni nst al | Transl ati ons function causes the entire trandation table for the widget to
be removed.

Using Accelerators

It isoften desirableto be ableto bind eventsin onewidget to actionsin another. In particular, it is often
useful to be able to invoke menu actions from the keyboard. The Intrinsics provide a facility, called
accelerators, that lets you accomplish this. An accelerator table isatranslation table that is bound with
its actions in the context of a particular widget, the source widget. The accelerator table can then be
installed on one or more destination widgets. When an event sequence in the destination widget would
cause an accelerator action to be taken, and if the source widget is sensitive, the actions are executed
as though triggered by the same event sequence in the accelerator source widget. The event is passed
to the action procedure without modification. The action procedures used within accel erators must not
assume that the source widget is realized nor that any fields of the event are in reference to the source
widget's window if the widget is realized.

Each widget instance contains that widget's exported accelerator table as a resource. Each class
of widget exports a method that takes a displayable string representation of the accelerators so
that widgets can display their current accelerators. The representation is the accelerator table in
canonical trandation table form (see Appendix B). The display_accelerator procedure pointer is of
type(* Xt StringProc).

typedef void (*XtStringProc)(w, string);

w Specifies the source widget that supplied the
accelerators.

string Specifiesthe string representation of the acceleratorsfor
this widget.

Accelerators can be specified in resource files, and the string representation is the same as for a
trand ation table. However, the interpretation of the #augnment and #over ri de directives applies
to what will happen when the accelerator isinstalled; that is, whether or not the accel erator translations
will override the translations in the destination widget. The default is#augnent , which means that
the accelerator tranglations have lower priority than the destination translations. The #r epl ace
directiveisignored for accelerator tables.

To parse an accelerator table, use Xt Par seAccel er at or Tabl e.

160

Trandation Management

Xt Accel erators Xt ParseAccel er at or Tabl e(source);
source Specifies the accelerator table to compile.

The Xt Par seAccel er at or Tabl e function compilesthe accelerator table into an opague internal
representation. The client should set the XtNaccel erators resource of each widget that isto be activated
by these trandlations to the returned value.

Toinstall accelerators from awidget on another widget, use Xt | nst al | Accel er at or s.
void Xtlnstall Accel erators(destination, source);

destination Specifies the widget on which the
accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the widget from which the
accelerators are to come. Must be of class
Core or any subclass thereof.

The Xt | nstal | Accel erat ors function installs the accelerators resource value from source
onto destination by merging the source accelerators into the destination trandations. If the source
display accelerator fieldisnon-NULL, Xt | nst al | Accel er at or s calsit with the sourcewidget
and a string representation of the accelerator table, which indicates that its accelerators have been
installed and that it should display them appropriately. The string representation of the accelerator
tableisits canonical translation table representation.

As a convenience for installing all accelerators from a widget and al its descendants onto one
destination, use Xt | nst al | Al | Accel er at ors.

void Xtlnstall Al Accel erators(destination, source);

destination Specifies the widget on which the
accelerators are to be installed. Must be of
class Core or any subclass thereof.

source Specifies the root widget of the widget tree
from which the accelerators are to come.
Must be of class Core or any subclass
thereof.

The Xt I nstal | Al'l Accel erators function recursively descends the widget tree rooted at
source and installs the accelerators resource value of each widget encountered onto destination. A
common useistocal Xt I nstal | Al | Accel er at or s and pass the application main window as
the source.

KeyCode-to-KeySym Conversions

The translation manager provides support for automatically translating KeyCodes in incoming
key events into KeySyms. KeyCode-to-KeySym trandator procedure pointers are of type
(* Xt KeyProc).

t ypedef voi d (* Xt KeyProc) (di spl ay, keycode, nodi fi ers,

nodi fiers_return, keysymreturn);

display Specifiesthe display that the KeyCodeis
from.

keycode Specifies the KeyCode to trand ate.

modifiers Specifies the modifiers to the KeyCode.

161

Trandation Management

modifiers return Specifies a location in which to store
a mask that indicates the subset of al
modifiers that are examined by the key
trangator for the specified keycode.

keysym return Specifies alocation in which to store the
resulting KeySym.

This procedure takes a KeyCode and modifiers and produces a KeySym. For any given key translator
function and keyboard encoding, modifiers return will be a constant per KeyCode that indicates the
subset of all modifiersthat are examined by the key trandlator for that KeyCode.

The KeyCode-to-KeySym trandator procedure must be implemented such that multiple calls with
the same display, keycode, and modifiers return the same result until either a new case converter, an
(* Xt CaseProc),isinstalled or aMappi ngNot i f y event isreceived.

The Intrinsics maintain tables internally to map KeyCodes to KeySyms for each open display.
Trandator procedures and other clients may share a single copy of this table to perform the same

mapping.

To return a pointer to the KeySym-to-KeyCode mapping table for a particular display, use
Xt Get Keysynirabl e.

KeySym * Xt Get Keysynirabl e(di spl ay, m n_keycode_return,

keysyns_per _keycode_return);

display Specifies the display whose table is
required.

min_keycode return Returns the minimum KeyCode valid for
the display.

keysyms per_keycode return Returns the number of KeySyms stored
for each KeyCode.

Xt Get Keysynirabl e returns a pointer to the Intrinsics' copy of the server's KeyCode-to-KeySym
table. This table must not be modified. There are keysyms per_keycode return KeySyms associated
with each KeyCode, located in the table with indices starting at index

(test _keycode - mn_keycode return) * keysynms_per_keycode return

for KeyCodetest keycode. Any entriesthat have no KeySyms associated with them contain the value
NoSymbol . Clients should not cache the KeySym table but should call Xt Get Keysynirabl e each
time the value is needed, as the table may change prior to dispatching each event.

For more information on this table, see Section 12.7 in Xlib — C Language X Interface.
Toregister akey trandator, use Xt Set KeyTr ansl at or .

voi d Xt Set KeyTr ansl at or (di spl ay, proc);

display Specifies the display from which to transate the
events.
proc Specifies the procedure to perform key tranglations.

TheXt Set KeyTr ansl at or function setsthe specified procedure asthe current key translator. The
default trandator is Xt Tr ansl at eKey, an (* Xt KeyPr oc) that uses the Shift, Lock, numlock,
and group modifiers with the interpretations defined in X Window System Protocol, Section 5. It is
provided so that new translators can call it to get default KeyCode-to-K eySym trand ations and so that
the default translator can be reinstalled.

162

Trandation Management

To invoke the currently registered KeyCode-to-KeySym trandlator, use Xt Tr ansl| at eKeycode.

voi d Xt Tr ansl at eKeycode(di spl ay, keycode, nmodi fi ers,
nodi fiers_return, keysymreturn);

display Specifies the display that the KeyCodeis
from.

keycode Specifies the KeyCode to trand ate.

modifiers Specifies the modifiers to the KeyCode.

modifiers return Returns a mask that indicates the
modifiers actually used to generate the
KeySym.

keysym return Returns the resulting KeySym.

The Xt Tr ansl at eKeycode function passes the specified arguments directly to the currently
registered KeyCode-to-KeySym tranglator.

To handle capitalization of nonstandard KeySyms, the Intrinsics allow clients to register case
conversion routines. Case converter procedure pointers are of type (* Xt CasePr oc) .

t ypedef voi d (*Xt CaseProc) (di spl ay, keysym | ower _return,

upper _return);

display Specifies the display connection for
which the conversion is required.

keysym Specifies the KeySym to convert.

lower_return Specifies a location into which to
store the lowercase equivalent for the
KeySym.

upper_return Specifies a location into which to
store the uppercase equivalent for the
KeySym.

If there is no case distinction, this procedure should store the KeySym into both return values.
To register a case converter, use Xt Regi st er CaseConverter.

voi d Xt Regi st er CaseConverter(di splay, proc, start, stop);

display Specifies the display from which the key events are
to come.

proc Specifies the (*XtCaseProc) to do the
conversions.

start Specifiesthe first KeySym for which this converter is
valid.

stop Specifiesthe last KeySym for which this converter is
valid.

The Xt Regi st er CaseConvert er registers the specified case converter. The start and stop
arguments provide the inclusive range of KeySyms for which this converter isto be called. The new
converter overrides any previous convertersfor KeySymsin that range. No interface existsto remove

163

Trandation Management

converters; you need to register anidentity converter. When anew converter isregistered, theIntrinsics
refresh the keyboard state if necessary. The default converter understands case conversion for al Latin
KeySyms defined in X Window System Protocol, Appendix A.

To determine uppercase and lowercase equivalents for a KeySym, use Xt Convert Case.

voi d Xt Convert Case(di splay, keysym |ower_return, upper_return);

display Specifies the display that the KeySym
came from.

keysym Specifies the KeySym to convert.

lower_return Returns the lowercase equivaent of the
KeySym.

upper_return Returns the uppercase equivalent of the
KeySym.

The Xt Convert Case function calls the appropriate converter and returns the results. A user-
supplied (* Xt KeyPr oc) may need to use this function.

Obtaining a KeySym in an Action Procedure

When an action procedure isinvoked on aKeyPr ess or KeyRel ease event, it often has aneed to
retrieve the KeySym and modifiers corresponding to the event that caused it to be invoked. In order
to avoid repeating the processing that was just performed by the Intrinsics to match the trandlation
entry, the KeySym and modifiers are stored for the duration of the action procedure and are made
available to the client.

To retrieve the KeySym and modifiers that matched the final event specification in the trandlation
table entry, use Xt Get Act i onKeysym

KeySym Xt Get Acti onKeysyn{event, nodifiers_return);

event Specifies the event pointer passed to the
action procedure by the Intrinsics.

modifiers return Returns the modifiers that caused the
match, if non-NULL.

If Xt Get Acti onKeysymis called after an action procedure has been invoked by the Intrinsics
and before that action procedure returns, and if the event pointer has the same value as the
event pointer passed to that action routine, and if the event is a KeyPr ess or KeyRel ease
event, then Xt Get Act i onKeysymreturns the KeySym that matched the final event specification
in the trandation table and, if modifiers return is non-NULL, the modifier state actually used
to generate this KeySym; otherwise, if the event is a KeyPr ess or KeyRel ease event, then
Xt Get Act i onKeysym cals Xt Tr ansl| at eKeycode and returns the results; else it returns
NoSynbol and does not examine modifiers return.

Note that if an action procedure invoked by the Intrinsics invokes a subsequent action procedure (and

soon)viaxXt Cal | Acti onPr oc, thenested action proceduremay alsocall Xt Get Act i onKeysym
to retrieve the Intrinsics KeySym and modifiers.

KeySym-to-KeyCode Conversions

To return the list of KeyCodes that map to a particular KeySym in the keyboard mapping table
maintained by the Intrinsics, use Xt KeysynmroKeycodelLi st .

164

Trandation Management

voi d Xt KeysyniloKeycodelLi st (di spl ay, keysym keycodes_return,

keycount _return);

display Specifies the display whose table is
required.

keysym Specifies the KeySym for which to
search.

keycodes return Returns a list of KeyCodes that have

keysym associated with them, or NULL if
keycount_returnisO.

keycount_return Returns the number of KeyCodes in the
keycode list.

The Xt KeysynmToKeycodeLi st procedure returns all the KeyCodes that have keysym in their
entry for the keyboard mapping table associated with display. For each entry in thetable, the first four
KeySyms (groups 1 and 2) areinterpreted as specified by X Window System Protocol, Section 5. If no
KeyCodes map to the specified KeySym, keycount_return is zero and *keycodes returnis NULL.

The caller should free the storage pointed to by keycodes return using Xt Fr ee when it is no longer
useful. If the caller needs to examine the KeyCode-to-KeySym table for a particular KeyCode, it
should call Xt Get Keysynirabl e.

Registering Button and Key Grabs for
Actions

To register button and key grabs for awidget'swindow according to the event bindingsin the widget's
trandation table, use Xt Regi st er Gr abAct i on.

void XtRegisterGabAction(action_proc, owner_events, event_nask,
poi nt er _node, keyboard node);

action_proc Specifies the action procedure to search
for in tranglation tables.

owner_events
event_mask
pointer_mode

keyboard_mode Specify arguments to Xt G- abBut t on
or Xt G abKey.

Xt Regi st er GrabAct i on adds the specified action_proc to a list known to the trandlation
manager. When awidget is realized, or when the translations of arealized widget or the accelerators
installed on a realized widget are modified, its trandation table and any installed accelerators are
scanned for action procedureson thislist. If any areinvoked on But t onPr ess or KeyPr ess events
as the only or final event in a sequence, the Intrinsics will call Xt G- abBut t on or Xt G abKey
for the widget with every button or KeyCode which maps to the event detail field, passing the
specified owner_events, event_mask, pointer_mode, and keyboard mode. For But t onPr ess events,
the modifiers specified in the grab are determined directly from the trandation specification and
confine_to and cursor are specified as None. For KeyPr ess events, if the trandation table entry
specifies colon (:) in the modifier list, the modifiers are determined by calling the key trandator
procedure registered for the display and calling Xt Gr abKey for every combination of standard
modifiers which map the KeyCode to the specified event detail KeySym, and ORing any modifiers

165

Trandation Management

specified in the trandlation table entry, and event_mask is ignored. If the trandation table entry does
not specify colon in the modifier list, the modifiers specified in the grab are those specified in the
trangdation table entry only. For both But t onPr ess and KeyPr ess events, don't-care modifiers
areignored unless the trandation entry explicitly specifies“Any” in the modifiersfield.

If the specified action_proc is already registered for the calling process, the new values will replace
the previoudly specified values for any widgets that become realized following the call, but existing
grabs are not atered on currently realized widgets.

When trangdlations or installed accelerators are modified for a realized widget, any previous key or
button grabs registered as a result of the old bindings are released if they do not appear in the new
bindings and are not explicitly grabbed by the client with Xt G- abKey or Xt Gr abBut t on.

Invoking Actions Directly

Normally action procedures are invoked by the Intrinsics when an event or event sequence arrives
for awidget. To invoke an action procedure directly, without generating (or synthesizing) events, use
Xt Cal | Acti onProc.

void Xt Call Acti onProc(w dget, action, event, parans, num parans);

widget Specifies the widget in which the action is
to be invoked. Must be of class Core or any
subclass thereof.

action Specifies the name of the action routine.

event Specifies the contents of the event passed to
the action routine.

params Specifies the contents of the params passed to
the action routine.

num_params Specifies the number of entriesin params.

Xt Cal | Acti onProc searches for the named action routine in the same manner and order as
trandation tables are bound, as described in Section 10.1.2, except that application action tables are
searched, if necessary, as of thetimeof thecall toXt Cal | Act i onPr oc. If found, the action routine
isinvoked with the specified widget, event pointer, and parameters. It isthe responsibility of the caller
to ensure that the contents of the event, params, and num_params arguments are appropriate for the
specified action routine and, if necessary, that the specified widget isrealized or sensitive. If thenamed
action routine cannot be found, Xt Cal | Act i onPr oc generates awarning message and returns.

Obtaining a Widget's Action List

Occasionally a subclass will require the pointers to one or more of its superclass's action procedures.
Thiswould be needed, for example, in order to envelop the superclass's action. To retrieve the list of
action procedures registered in the superclasss actions field, use Xt Get Act i onLi st.

voi d Xt Get Acti onLi st (wi dget _cl ass, actions_return,
num acti ons_return);

widget_class Specifies the widget class whose actions
are to be returned.

actions_return Returns the action list.
num_actions return Returns the number of action procedures
declared by the class.

166

Trandation Management

Xt Get Acti onLi st returns the action table defined by the specified widget class. This table
does not include actions defined by the superclasses. If widget class is not initialized, or is not
cor eW dget Cl ass or asubclassthereof, or if the classdoes not define any actions, *actions return
will be NULL and *num_actions _return will be zero. If *actions return is non-NULL the client is
responsible for freeing the table using Xt Fr ee when it is no longer needed.

167

Chapter 11. Utility Functions

The Intrinsics provide a number of utility functions that you can useto

* Determine the number of elementsin an array.

e Trandate strings to widget instances.

* Manage memory usage.

 Share graphics contexts.

* Manipulate selections.

» Merge exposure events into aregion.

e Trandate widget coordinates.

» Locate awidget given awindow id.

» Handleerrors.

* Setthe WM_COLORMAP_WINDOWS property.
* Locate files by name with string substitutions.
 Register callback functions for external agents.
» Locate al the displays of an application context.

Determining the Number of Elements in an
Array

To determine the number of elementsin afixed-size array, use Xt Nunber .
Car di nal Xt Nunber (array);
array Specifies afixed-size array of arbitrary type.

The Xt Nunber macro returns the number of elements allocated to the array.

Translating Strings to Widget Instances

To trandlate a widget name to awidget instance, use Xt NaneToW dget .

W dget Xt NaneToW dget (ref erence, names);

reference Specifies the widget from which the search is
to start. Must be of class Core or any subclass
thereof.

names Specifies the partialy qualified name of the
desired widget.

The Xt NanmeToW dget function searches for a descendant of the reference widget whose name
matches the specified names. The names parameter specifies a simple object name or a series of
simple object name components separated by periods or asterisks. Xt NameToW dget returns the
descendant with the shortest name matching the specification according to the following rules, where
child is either a pop-up child or anormal child if the widget's class is a subclass of Composite :

» Enumerate the object subtree rooted at the reference widget in breadth-first order, qualifying the
name of each object with the names of all itsancestors up to, but not including, the reference widget.
The ordering between children of acommon parent is not defined.

» Return thefirst object in the enumeration that matches the specified name, where each component
of names matches exactly the corresponding component of the qualified object name and asterisk
matches any series of components, including none.

* If no match isfound, return NULL.

168

Utility Functions

Since breadth-first traversal is specified, the descendant with the shortest matching name (i.e.,
the fewest number of components), if any, will aways be returned. However, since the order of
enumeration of childrenisundefined and sincethe Intrinsics do not requirethat all children of awidget
have unique names, Xt NaneToW dget may return any child that matches if there are multiple
objects in the subtree with the same name. Consecutive separators (periods or asterisks) including at
least one asterisk are treated as a single asterisk. Consecutive periods are treated as a single period.

Managing Memory Usage

The Intrinsics memory management functions provide uniform checking for null pointers and error
reporting on memory allocation errors. These functions are completely compatible with their standard
C language runtime counterpartsmal | oc, cal | oc,real | oc, andf r ee with thefollowing added
functionality:

* Xt Mal | oc, Xt Cal | oc, and Xt Real | oc give an error if there is not enough memory.
o Xt Fr ee simply returnsif passed aNULL pointer.
» Xt Real | oc simply allocates new storage if passed aNULL pointer.

See the standard C library documentation on el | oc, cal | oc, real | oc, and f r ee for more
information.

To alocate storage, use Xt Mal | oc.
char * Xt Ml | oc(size);
size Specifies the number of bytes desired.

The Xt Mal | oc function returns a pointer to a block of storage of at |east the specified size bytes. If
there isinsufficient memory to allocate the new block, Xt Mal | oc calls Xt Er r or Msg.

To alocate and initialize an array, use Xt Cal | oc.

char * Xt Call oc(num size);

num Specifies the number of array elementsto allocate.

size Specifies the size of each array element in bytes.

The Xt Cal | oc function allocates space for the specified number of array elements of the specified
size and initializes the space to zero. If there is insufficient memory to allocate the new block,
Xt Cal | oc calls Xt Err or Msg. Xt Cal | oc returns the address of the allocated storage.

To change the size of an alocated block of storage, use Xt Real | oc.

char *XtReal | oc(ptr, nunj;

ptr Specifiesapointer to the old storage allocated with Xt Mal | oc,
Xt Cal | oc, or Xt Real | oc, or NULL.

num Specifies number of bytes desired in new storage.

The Xt Real | oc function changes the size of a block of storage, possibly moving it. Then it copies
the old contents (or asmuch aswill fit) into the new block and freesthe old block. If thereisinsufficient
memory to allocate the new block, Xt Real | oc calls Xt Er r or Msg. If ptr isNULL, Xt Real | oc
simply calls Xt Mal | oc. Xt Real | oc then returns the address of the new block.

To free an alocated block of storage, use Xt Fr ee.

void XtFree(ptr);

169

Utility Functions

ptr Specifies a pointer to a block of storage allocated with
Xt Mal | oc, Xt Cal | oc, or Xt Real | oc, or NULL.

The Xt Fr ee function returns storage, allowing it to be reused. If ptr is NULL, Xt Fr ee returns
immediately.

To alocate storage for anew instance of atype, use Xt New.
type XtNew(t);
type Specifies apreviously declared type.

Xt New returns a pointer to the allocated storage. If there is insufficient memory to allocate the new
block, Xt New calls Xt Er r or Msg. Xt New is a convenience macro that calls Xt Mal | oc with the
following arguments specified:

((type *) XtMlloc((unsigned) sizeof(type)))

The storage allocated by Xt New should be freed using Xt Fr ee.

To copy an instance of astring, use Xt NewSt r i ng.

String XtNewString(string);

string Specifies a previously declared string.

Xt NewsSt r i ng returns a pointer to the allocated storage. If there is insufficient memory to alocate
the new block, Xt NewSt ri ng calls Xt Err or Msg. Xt NewSt r i ng is a convenience macro that
calls Xt Mal | oc with the following arguments specified:

(strcpy(XtMall oc((unsigned)strlen(str) + 1), str))

The storage allocated by Xt NewSt r i ng should be freed using Xt Fr ee.

Sharing Graphics Contexts

The Intrinsics provide a mechanism whereby cooperating objects can share a graphics context (GC),
thereby reducing both the number of GCs created and the total number of server callsin any given
application. The mechanism is a ssimple caching scheme and alows for clients to declare both
modifiable and nonmodifiable fields of the shared GCs.

To obtain a shareable GC with modifiable fields, use Xt Al | ocat eGC.

GC Xt AllocateCGC(object, depth, value_nmask, values, dynam c_nask,
unused_nask) ;

object Specifies an object, giving the screen for
which the returned GC is valid. Must be
of class Object or any subclass thereof.

depth Specifiesthe depth for which thereturned
GCisvalid, or 0.

value_mask Specifies fields of the GC that are
initialized from values.

values Specifies the values for the initialized
fields.

170

Utility Functions

dynamic_mask Specifies fields of the GC that will be
modified by the caller.

unused_mask Specifiesfields of the GC that will not be
needed by the caller.

The Xt Al | ocat eGCfunction returns a shareable GC that may be modified by the client. The screen
field of the specified widget or of the nearest widget ancestor of the specified object and the specified
depth argument supply the root and drawable depths for which the GC isto be valid. If depthis zero,
the depth is taken from the depth field of the specified widget or of the nearest widget ancestor of
the specified object.

The value_mask argument specifies fields of the GC that are initialized with the respective member
of the values structure. The dynamic_mask argument specifies fields that the caller intends to modify
during program execution. The caller must ensure that the corresponding GC field is set prior to each
use of the GC. The unused_mask argument specifiesfields of the GC that are of no interest tothe caller.
The caller may make no assumptions about the contents of any fields specified in unused_mask. The
caller may assumethat at all timesall fieldsnot specifiedin either dynamic_mask or unused_mask have
their default valueif not specified in value_mask or the value specified by values. If afieldis specified
in both value_mask and dynamic_mask, the effect is as if it were specified only in dynamic_mask
and then immediately set to the value in values. If afield is set in unused_mask and aso in either
value_mask or dynamic_mask, the specification in unused_mask is ignored.

Xt Al | ocat eCGC tries to minimize the number of unique GCs created by comparing the
arguments with those of previous calls and returning an existing GC when there are no conflicts.
Xt Al'l ocat eGC may modify and return an existing GC if it was allocated with a nonzero
unused_mask.

To obtain a shareable GC with no modifiable fields, use Xt Get GC.
GC Xt Get GC(obj ect, val ue_nmask, val ues);
object Specifies an object, giving the screen and

depth for which thereturned GCisvalid. Must
be of class Object or any subclass thereof.

value_mask Specifies which fields of the values structure
are specified.
values Specifies the actual valuesfor this GC.

The Xt Get GC function returns a shareable, read-only GC. The parameters to this function are the
same as those for XCr eat e GC except that an Object is passed instead of a Display. Xt Get GC is
equivaent to Xt Al | ocat eGC with depth, dynamic_mask, and unused_mask all zero.

Xt Get GC shares only GCs in which all values in the GC returned by XCr eat eGC are the same.
In particular, it does not use the value_mask provided to determine which fields of the GC a widget
considersrelevant. Thevalue_mask isused only to tell the server which fields should befilled in from
values and which it should fill in with default values.

To deallocate a shared GC when it is no longer needed, use Xt Rel easeGC.

voi d Xt Rel easeGC(obj ect, gc);

object Specifies any object on the Display for which the GC
was created. Must be of class Object or any subclass
thereof.

gc Specifies the shared GC obtained with either

Xt Al | ocat eGCor Xt Get GC.

171

Utility Functions

References to shareable GCs are counted and a free request is generated to the server when the last
user of agiven GC releasesiit.

Managing Selections

Arbitrary widgetsin multiple applications can communicate with each other by means of the Intrinsics
global selection mechanism, which conforms to the specifications in the | nter-Client Communication
Conventions Manual. The Intrinsics supply functionsfor providing and receiving selection datain one
logical piece (atomic transfers) or in smaller logical segments (incremental transfers).

The incremental interface is provided for a selection owner or selection requestor that cannot or
prefers not to pass the selection value to and from the Intrinsics in asingle call. For instance, either
an application that is running on a machine with limited memory may not be able to store the entire
selection value in memory or a selection owner may already have the selection value available in
discrete chunks, and it would be more efficient not to have to alocate additional storage to copy the
pieces contiguously. Any owner or requestor that prefersto deal with the selection value in segments
can use the incremental interfacesto do so. The transfer between the selection owner or requestor and
the Intrinsics is not required to match the underlying transport protocol between the application and
the X server; the Intrinsicswill break too large a selection into smaller piecesfor transport if necessary
and will coalesce a selection transmitted incrementally if the value was requested atomically.

Setting and Getting the Selection Timeout Value

To set the Intrinsics selection timeout, use Xt AppSet Sel ect i onTi meout .

voi d Xt AppSet Sel ecti onTi neout (app_context, tineout);

app_context Specifies the application context.
timeout Specifies the selection timeout in
milliseconds.

To get the current selection timeout value, use Xt AppGet Sel ecti onTi nmeout .

unsi gned | ong Xt AppCet Sel ecti onTi neout (app_context);

app_context Specifies the application context.

The Xt AppGet Sel ecti onTi neout function returns the current selection timeout value in
milliseconds. The selection timeout isthe time within which the two communicating applications must
respond to one another. The initial timeout value is set by the selectionTimeout application resource

asretrieved by Xt Di spl ayl nitial i ze. If selectionTimeout is not specified, the default is five
seconds.

Using Atomic Transfers

When using atomic transfers, the owner will completely process one selection request at a time.
The owner may consider each request individually, since there is no possibility for overlap between
evaluation of two requests.

Atomic Transfer Procedures

The following procedures are used by the selection owner when providing selection datain a single
unit.

The procedure pointer specified by the owner to supply the selection data to the Intrinsicsis of type
(* Xt Convert Sel ecti onProc).

172

Utility Functions

typedef Boolean (*XtConvertSelectionProc)(w, selection, target,
type_return, value_return, length_return, format_return);

w Specifies the widget that currently owns
this selection.
selection Specifies the atom naming the selection

requested (for example, XA_ PRI MARY
or XA_SECONDARY) .

target Specifies the target type of the selection
that has been requested, which indicates
the desired information about the
selection (for example, File Name, Text,
Window).

type return Specifies a pointer to an atom into which
the property type of the converted value
of the selection is to be stored. For
instance, either File Name or Text might
have property type XA_STRI NG

value return Specifies a pointer into which a pointer
to the converted value of the selection
is to be stored. The selection owner is
responsible for alocating this storage.
If the selection owner has provided an
(* Xt Sel ecti onDoneProc) for the
selection, this storage is owned by the
selection owner; otherwise, it is owned
by the Intrinsics selection mechanism,
which frees it by calling Xt Fr ee when
it isdone with it.

length_return Specifiesapointer into which the number
of elements in value return, each of
size indicated by format_return, isto be
stored.

format_return Specifies a pointer into which the sizein
bits of the data elements of the selection
valueisto be stored.

This procedure is called by the Intrinsics selection mechanism to get the value of a selection as a
given type from the current selection owner. It returns Tr ue if the owner successfully converted the
selection to the target type or Fal se otherwise. If the procedure returns Fal se, the values of the
return arguments are undefined. Each (* Xt Convert Sel ecti onProc) should respond to target
value TARGETS by returning a value containing the list of the targets into which it is prepared to
convert the selection. The value returned in format_return must be one of 8, 16, or 32 to alow the
server to byte-swap the data if necessary.

This procedure does not need to worry about responding to the MULTIPLE or the TIMESTAMP
target values (see the section called “Window Creation Convenience Routing” in the Inter-Client
Communication Conventions Manual). A selection request with the MULTIPLE target type is
transparently transformed into a series of calls to this procedure, one for each target type, and a
selection request with the TIMESTAMP target value is answered automatically by the Intrinsics using
the time specified in the call to Xt OamSel ecti on or Xt OmSel ecti onl ncrement al .

Toretrievethe Sel ect i onRequest event that triggered the (* Xt Convert Sel ecti onProc)
procedure, use Xt Get Sel ect i onRequest.

173

Utility Functions

XSel ect i onRequest Event * Xt Get Sel ecti onRequest (w, sel ecti on,
request _id);

w Specifies the widget that currently owns this
selection. Must be of class Core or any
subclass thereof.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of
incremental selections, or NULL inthe case of
atomic transfers.

Xt Get Sel ect i onRequest may be caled only from within an
(* Xt Convert Sel ecti onProc) procedure and returns a pointer to the Sel ect i onRequest

event that caused the conversion procedure to be invoked. Request_id specifies a unique id for the
individual request in the case that multipleincremental transfers are outstanding. For atomic transfers,
request_id must be specified asNULL. If no Sel ecti onRequest event isbeing processed for the
specified widget, selection, and request_id, Xt Get Sel ecti onRequest returnsNULL.

The procedure pointer specified by the owner when it desires notification upon losing ownership is
of type (* Xt LoseSel ecti onProc).

typedef void (*XtLoseSel ectionProc)(w, selection);

w Specifies the widget that has lost selection
ownership.
selection Specifies the atom naming the selection.

This procedure is called by the Intrinsics selection mechanism to inform the specified widget that it
haslost the given selection. Note that this procedure does not ask the widget to relinquish the selection
ownership; it is merely informative.

The procedure pointer specified by the owner when it desires naotification of receipt of the data or
when it manages the storage containing the datais of type (* Xt Sel ecti onDonePr oc) .

typedef void (*XtSel ecti onDoneProc) (w, selection, target);

w Specifies the widget that owns the converted
selection.

selection Specifies the atom naming the selection that was
converted.

target Specifiesthe target type to which the conversion
was done.

This procedure is called by the Intrinsics selection mechanism to inform the selection owner that a
selection requestor has successfully retrieved a selection value. If the selection owner has registered
an (* Xt Sel ecti onDonePr oc), it should expect it to be called once for each conversion that it
performs, after the converted val ue has been successfully transferred to the requestor. If the selection
owner has registered an (* Xt Sel ecti onDonePr oc), it also owns the storage containing the
converted selection value.

Getting the Selection Value

The procedure pointer specified by the requestor to receive the selection datafrom the Intrinsicsiis of
type (* Xt Sel ecti onCal | backProc).

typedef void (*XtSelectionCallbackProc)(w, client_data, selection,
type, value, length, format);

174

Utility Functions

w Specifies the widget that requested the
selection value.

client_data Specifies a value passed in by the widget
when it requested the selection.

selection Specifies the name of the selection that was
reguested.

type Specifies the representation type of

the sdection vaue (for example,
XA_STRING). Note that it is not the
target that was requested (which the client
must remember for itself), but the type that
is used to represent the target. The special
symbolic constant XT_CONVERT_FAI L
is used to indicate that the selection
conversion failed because the selection
owner did not respond within the Intrinsics
selection timeout interval.

value Specifies a pointer to the selection value.
The requesting client owns this storage
and is responsible for freeing it by calling
Xt Fr ee when it is done with it.

length Specifies the number of elementsin value.

format Specifies the size in bits of the datain each
element of value.

This procedure is called by the Intrinsics selection mechanism to deliver the requested selection to
the requestor.

If the Sel ecti onNot i fy event returns a property of None, meaning the conversion has been
refused because there is no owner for the specified selection or the owner cannot convert the selection
to the requested target for any reason, the procedure is called with a value of NULL and a length of
zero.

To obtain the selection value in a single logical unit, use Xt Get Sel ecti onVal ue or
Xt Get Sel ecti onVal ues.

voi d Xt Get Sel ecti onVal ue(w, sel ection, target, cal | back,
client_data, tine);

w Specifies the widget making the request.
Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired;

for example, XA_PRI MARY.

target Specifies the type of information needed
about the selection.

callback Specifies the procedure to be called when
the selection value has been obtained. Note
that this is how the selection value is
communicated back to the client.

client_data Specifies additional datato be passed to the
specified procedure when it is called.

175

Utility Functions

time Specifies the timestamp that indicates
when the selection request was initiated.
This should be the timestamp of the
event that triggered this request; the value
Cur rent Ti me isnot acceptable.

The Xt Get Sel ecti onVal ue function requests the value of the selection converted to the
target type. The specified callback is caled a some time after Xt Get Sel ecti onVal ue is
called, when the selection value is received from the X server. It may be called before or after
Xt Get Sel ecti onVal ue returns. For more information about selection, target, and time, see
Section 2.6 in the Inter-Client Communication Conventions Manual.

voi d Xt Get Sel ectionVal ues(w, selection, targets, count, callback,
client_data, tine);

w Specifies the widget making the request.
Must be of class Core or any subclass
thereof.

selection Specifies the particular selection desired

(that is, primary or secondary).

targets Specifies the types of information needed
about the selection.

count Specifies the length of the targets and
client_data lists.

callback Specifies the callback procedure to be
called with each selection value obtained.
Notethat thisishow the selection valuesare
communicated back to the client.

client_data Specifiesalist of additional datavalues, one
for each target type, that are passed to the
callback procedure when it is called for that
target.

time Specifies the timestamp that indicates
when the selection request was initiated.
This should be the timestamp of the
event that triggered this request; the value
Cur rent Ti ne isnot acceptable.

The Xt Get Sel ect i onVal ues functionissimilar to multiplecallsto Xt Get Sel ecti onVal ue
except that it guarantees that no other client can assert ownership between requests and therefore that
all the conversions will refer to the same selection value. The callback isinvoked once for each target
value with the corresponding client data. For more information about selection, target, and time, see
section 2.6 in the Inter-Client Communication Conventions Manual.

Setting the Selection Owner

To set the selection owner and indicate that the selection value will be provided in one piece, use
Xt OmSel ecti on.

Bool ean Xt OmnSel ection(w, sel ecti on, tine, convert_proc,
| ose_sel ecti on, done_proc);

w Specifies the widget that wishes to
become the owner. Must be of class Core
or any subclass thereof.

176

Utility Functions

selection Specifies the name of the selection (for
example, XA PRI MARY).

time Specifies the timestamp that indicates
when the ownership request was
initiated. This should be the timestamp
of the event that triggered ownership; the
value Cur r ent Ti ne isnot acceptable.

convert_proc Specifies the procedure to be called
whenever a client requests the current
value of the selection.

lose selection Specifies the procedure to be called
whenever the widget has lost selection
ownership, or NULL if the owner is not
interested in being called back.

done _proc Specifies the procedure called after the
requestor has received the selection
value, or NULL if the owner is not
interested in being called back.

The Xt OwmnSel ect i on function informsthe Intrinsics selection mechanism that a widget wishesto
own aselection. It returns Tr ue if the widget successfully becomesthe owner and Fal se otherwise.
The widget may fail to become the owner if some other widget has asserted ownership at atime later
than this widget. The widget can lose selection ownership either because some other widget asserted
later ownership of the selection or because the widget voluntarily gave up ownership of the selection.
The lose_selection procedureis not called if the widget fails to obtain selection ownership in the first
place.

If adone_proc is specified, the client owns the storage allocated for passing the value to the Intrinsics.
If done_proc is NULL, the convert_proc must allocate storage using Xt Mal | oc, Xt Real | oc, or
Xt Cal | oc, and the value specified is freed by the Intrinsics when the transfer is compl ete.

Usually, a selection owner maintains ownership indefinitely until some other widget requests
ownership, at which time the Intrinsics selection mechanism informs the previous owner that it has
lost ownership of the selection. However, in response to some user actions (for example, when a user
deletes the information selected), the application may wish to explicitly inform the Intrinsics by using
Xt Di sownSel ect i on that it no longer is to be the selection owner.

voi d Xt Di sownSel ecti on(w, selection, tine);

w Specifies the widget that wishes to relinquish
ownership.

selection Specifies the atom naming the selection being
given up.

time Specifies the timestamp that indicates when the
request to relinquish selection ownership was
initiated.

The Xt Di sownSel ect i on function informs the Intrinsics selection mechanism that the specified
widget is to lose ownership of the selection. If the widget does not currently own the selection,
either because it lost the selection or because it never had the selection to begin with,
Xt Di sownSel ect i on does nothing.

After awidget hascalled Xt Di sownSel ect i on, itsconvert procedureisnot called evenif arequest
arrives|ater with atimestamp during the period that thiswidget owned the sel ection. However, itsdone

177

Utility Functions

procedure is called if a conversion that started before the call to Xt Di sownSel ect i on finishes
after the call to Xt Di sownSel ecti on.

Using Incremental Transfers

When using the incremental interface, an owner may have to process more than one sel ection request
for the same selection, converted to the same target, at the same time. The incremental functions take
arequest_id argument, which is an identifier that is guaranteed to be unique among all incremental
requests that are active concurrently.

For example, consider the following:

» Upon receiving arequest for the selection value, the owner sends the first segment.

» While waiting to be called to provide the next segment value but before sending it, the owner
receives another request from a different requestor for the same selection value.

 To distinguish between the requests, the owner uses the request_id value. This allows the owner
to distinguish between the first requestor, which is asking for the second segment, and the second
reguestor, which is asking for the first segment.

Incremental Transfer Procedures

The following procedures are used by selection owners who wish to provide the selection data in
multiple segments.

The procedure pointer specified by the incremental owner to supply the selection datato the Intrinsics
isof type (* Xt Convert Sel ecti onl ncrProc).

t ypedef Xt Poi nter XtRequestld;

t ypedef Bool ean (*XtConvert Sel ectionlncrProc)(w, selection, target,
type_return, value_return, length_return, format_return, max_| ength,
client_data, request _id);

w Specifies the widget that currently owns
this selection.

selection Specifies the atom that names the
sel ection requested.

target Specifies the type of information
required about the selection.

type return Specifies a pointer to an atom into which

the property type of the converted value
of the selection isto be stored.

value return Specifies a pointer into which a pointer
to the converted value of the selection
is to be stored. The selection owner is
responsible for allocating this storage.

length_return Specifiesapointer into which the number
of elements in value return, each of
size indicated by format_return, is to be
stored.

format_return Specifies a pointer into which the sizein
bits of the data elements of the selection

178

Utility Functions

valueisto be stored so that the server may
byte-swap the data if necessary.

max_length Specifies the maximum number of bytes
which may betransferred at any onetime.

client_data Specifies the value passed in by the
widget when it took ownership of the
selection.

request_id Specifies an opaque identification for a
specific request.

This procedure is called repeatedly by the Intrinsics selection mechanism to get the next incremental
chunk of data from a selection owner who has called Xt OmSel ect i onl ncr enment al . It must
return Tr ue if the procedure has succeeded in converting the selection data or Fal se otherwise.
On thefirst call with a particular request id, the owner must begin a new incremental transfer for the
requested selection and target. On subsequent calls with the same request id, the owner may assume
that the previously supplied value is no longer needed by the Intrinsics; that is, a fixed transfer area
may be alocated and returned in value return for each segment to be transferred. This procedure
should store a non-NULL value in value_return and zero in length_return to indicate that the entire
selection has been delivered. After returning this final segment, the request id may be reused by the
Intrinsics to begin a new transfer.

To retrieve the Sel ect i onRequest event that triggered the selection conversion procedure, use
Xt Get Sel ecti onRequest , described in Section 11.5.2.1.

The procedure pointer specified by the incremental selection owner when it desires notification upon
no longer having ownership is of type (* Xt LoseSel ecti onl ncr Proc) .

typedef void (*XtLoseSel ectionlncrProc)(w, selection, client_data);

w Specifies the widget that has lost the
selection ownership.

selection Specifies the atom that names the selection.

client_data Specifies the value passed in by the widget

when it took ownership of the selection.

This procedure, which is optional, is called by the Intrinsics to inform the selection owner that it no
longer owns the selection.

The procedure pointer specified by the incremental selection owner when it desires notification
of receipt of the data or when it manages the storage containing the data is of type
(* Xt Sel ecti onDonel ncrProc).

typedef void (*XtSel ectionDonel ncrProc) (w, sel ection, target,
request _id, client_data);

w Specifiesthewidget that ownsthe selection.

selection Specifies the atom that names the selection
being transferred.

target Specifies the target type to which the
conversion was done.

request_id Specifies an opaque identification for a
specific request.

179

Utility Functions

client_data Specified the value passed in by the widget
when it took ownership of the selection.

This procedure, which is optiondl, is called by the Intrinsics after the requestor has retrieved the final
(zero-length) segment of the incremental transfer to indicate that the entire transfer is complete. If
this procedure is not specified, the Intrinsics will free only the final value returned by the selection
owner using Xt Fr ee.

The procedure pointer specified by the incremental selection owner to notify it if atransfer should be
terminated prematurely is of type (* Xt Cancel Convert Sel ecti onProc) .

typedef void (*XtCancel Convert Sel ecti onProc)(w, selection, target,
request _id, client_data);

w Specifiesthewidget that ownsthe selection.

selection Specifies the atom that names the selection
being transferred.

target Specifies the target type to which the
conversion was done.

request_id Specifies an opaque identification for a
specific request.

client_data Specifies the value passed in by the widget

when it took ownership of the selection.

This procedure is caled by the Intrinsics when it has been determined by means of a timeout or
other mechanism that any remaining segments of the selection no longer need to be transferred. Upon
receiving thiscallback, the sel ection request is considered compl ete and the owner can freethe memory
and any other resources that have been alocated for the transfer.

Getting the Selection Value Incrementally

To obtain the vaue of the sdection using incremental transfers, use
Xt Get Sel ecti onVal uel ncr ement al or Xt Get Sel ecti onVal uesl ncrenent al .

voi d Xt Get Sel ecti onVal uel ncrenent al (w, sel ection, target,
sel ection_cal |l back, client_data, tine);

w Specifies the widget making the request.
Must be of class Core or any subclass
thereof.

selection Specifiesthe particular selection desired.

target Specifies the type of information needed
about the selection.

selection_callback Specifies the callback procedure to be
called to receive each data segment.

client_data Specifies client-specific datato be passed
to the specified callback procedure when
itisinvoked.

time Specifies the timestamp that indicates

when the selection request was initiated.
This should be the timestamp of the

180

Utility Functions

event that triggered thisrequest; thevalue
Cur rent Ti me isnot acceptable.

The Xt Get Sel ecti onVal uel ncrenment al function is similar to Xt Get Sel ecti onVal ue
except that the selection_callback procedure will be called repeatedly upon delivery of multiple
segments of the selection value. The end of the selection value is indicated when selection_callback
is caled with a non-NULL value of length zero, which must still be freed by the client. If
the transfer of the selection is aborted in the middle of a transfer (for example, because of a
timeout), the selection_callback procedure is called with a type value equal to the symbolic constant
XT_CONVERT_FAI L sothat therequestor can dispose of the partial selection valueit has collected up
until that point. Upon receiving XT_CONVERT_FAI L, the requesting client must determine for itself
whether or not apartially completed datatransfer ismeaningful. For moreinformation about selection,
target, and time, see Use of Selection Atomsin the Inter-Client Communication Conventions Manual .

voi d Xt Get Sel ectionVal uesl ncrenental (w, selection, targets, count,
sel ection_cal |l back, client_data, tine);

w Specifies the widget making the request.
Must be of class Core or any subclass
thereof.

selection Specifiesthe particular selection desired.

targets Specifiesthetypes of information needed

about the selection.

count Specifies the length of the targets and
client_datalists.

selection_callback Specifies the callback procedure to be
called to receive each selection value.

client_data Specifiesalist of client data (onefor each
target type) values that are passed to the
callback procedurewhenitisinvoked for
the corresponding target.

time Specifies the timestamp that indicates
when the selection request was initiated.
This should be the timestamp of the
event that triggered thisrequest; thevalue
Cur rent Ti ne isnot acceptable.

The Xt Get Sel ecti onVal uesl ncr enent al function is similar to
Xt Get Sel ectionVal uel ncrenmental except that it takes a list of targets
and client data. Xt Get Sel ectionVal uesl ncrenental is equivaent to caling
Xt Get Sel ecti onVal uel ncrenent al successively for each target/client_data pair except that
Xt Get Sel ecti onVal uesl ncrenent al does guarantee that all the conversions will use the
same selection value because the ownership of the selection cannot change in the middlie of the
list, as would be possible when calling Xt Get Sel ect i onVal uel ncr enent al repeatedly. For
more information about selection, target, and time, see Section 2.6 in the Inter-Client Communication
Conventions Manual.

Setting the Selection Owner for Incremental Transfers

To st the selection owner when using incremental transfers, use
Xt OwmnSel ecti onl ncrenent al .

Bool ean Xt OmnSel ecti onl ncrenent al (w, sel ecti on, tine,
convert _cal |l back, |ose callback, done_callback, cancel call back,
client _data);

181

Utility Functions

w Specifies the widget that wishes to
become the owner. Must be of class Core
or any subclass thereof.

selection Specifies the atom that names the
selection.
time Specifies the timestamp that indicates

when the selection ownership request
was initiated. This should be the
timestamp of the event that triggered
ownership; the value Cur rent Ti ne is
not acceptable.

convert_callback Specifies the procedure to be called
whenever the current value of the
selection is requested.

lose callback Specifies the procedure to be called
whenever the widget has lost selection
ownership, or NULL if the owner is not
interested in being notified.

done_callback Specifies the procedure called after
the requestor has received the entire
selection, or NULL if the owner is not
interested in being notified.

cancel_callback Specifies the callback procedure to be
caled when a selection request aborts
because atimeout expires, or NULL if the
owner is not interested in being notified.

client_data Specifies the argument to be passed to
each of the callback procedures when
they are called.

The Xt OmSel ecti onl ncrenent al procedure informs the Intrinsics incremental selection
mechanism that the specified widget wishes to own the selection. It returns Tr ue if the specified
widget successfully becomes the selection owner or Fal se otherwise. For more information about
selection, target, and time, see Section 2.6 in the Inter-Client Communication Conventions Manual.

If adone_callback procedure is specified, the client owns the storage allocated for passing the value
to the Intrinsics. If done_callback is NULL, the convert_callback procedure must allocate storage
using Xt Mal | oc, Xt Real | oc,or Xt Cal | oc, andthefinal value specifiedisfreed by thelntrinsics
when the transfer is complete. After a selection transfer has started, only one of the done_callback or
cancel_callback proceduresisinvoked to indicate completion of the transfer.

The lose_callback procedure does not indicate completion of any in-progress transfers; it is invoked
at thetime a Sel ecti onCl ear event is dispatched regardless of any active transfers, which are
still expected to continue.

A widget that becomes the selection owner using Xt OmSel ecti onl ncrenent al may use
Xt Di sownSel ect i on to relinquish selection ownership.

Setting and Retrieving Selection Target Parameters

To gspecify target parameters for a selection request with a single target, use
Xt Set Sel ecti onPar anet er s.

182

Utility Functions

void Xt Set Sel ecti onPar aneters(requestor, selection, type, value,
[ength, format);

requestor Specifiesthe widget making the request. Must be
of class Core or any subclass thereof.

selection Specifies the atom that names the selection.

type Specifies the type of the property in which the
parameters are passed.

value Specifies a pointer to the parameters.

length Specifiesthe number of elements containing data
in value, each element of a size indicated by
format.

format Specifies the size in bits of the data in the

elements of value.

The specified parameters are copied and stored in a new property of the specified type and format on
the requestor'swindow. To initiate a selection request with atarget and these parameters, a subsequent
call to Xt Get Sel ecti onVal ue orto Xt Get Sel ect i onVal uel ncr enment al specifying the
same requestor widget and selection atom will generate a Convert Sel ecti on request referring
to the property containing the parameters. If Xt Set Sel ect i onPar anet er s is caled more than
once with the same widget and selection without acall to specify arequest, the most recently specified
parameters are used in the subsequent request.

The possible values of format are 8, 16, or 32. If the format is 8, the elements of value are assumed
to be sizeof(char); if 16, sizeof(short); if 32, sizeof(long).

To generate a MULTIPLE target request with parameters for any of
the multiple targets of the selection request, precede individua @ calls
to XtGetSelectionValue and Xt CGet Sel ecti onVal uel ncrenent al with
corresponding individual calls to Xt Set Sel ecti onParaneters, and enclose
these all within Xt Creat eSel ecti onRequest and Xt SendSel ecti onRequest .
Xt Get Sel ecti onVal ues and Xt Get Sel ecti onVal uesl ncr enent al cannot be used to
make sel ection requests with parameterized targets.

To retrieve any target parameters needed to perform a selection conversion, the selection owner calls
Xt Get Sel ecti onPar anet ers.

voi d Xt Get Sel ecti onPar anet er s(owner, sel ection, request _id,
type_return, value_return, length return, format _return);

owner Specifies the widget that owns the
specified selection.

selection Specifies the selection being processed.

request_id Specifies the requestor id in the case of

incrementa selections, or NULL in the
case of atomic transfers.

type return Specifies a pointer to an atom in which
the property type of the parameters is
stored.

value return Specifiesapointer into which apointer to

the parameters is to be stored. A NULL

183

Utility Functions

isstored if no parameters accompany the
request.

length_return Specifiesapointer into which the number
of data elements in value return of size
indicated by format_return are stored.

format_return Specifies a pointer into which the sizein
bits of the parameter datain the elements
of valueis stored.

Xt Get Sel ecti onPar anet ers may be caled only from within an
(*Xt Convert Sel ecti onProc) or from within the fir¢ cdl to an
(*Xt Convert Sel ecti onl ncr Proc) with anew request_id.

It isthe responsibility of the caller to free the returned parametersusing Xt Fr ee when the parameters
are no longer needed.

Generating MULTIPLE Requests

To have the Intrinsics bundle multiple calls to make selection requests into a single request using a
MULTIPLE target, use Xt Cr eat eSel ecti onRequest and Xt SendSel ect i onRequest .

voi d Xt Creat eSel ecti onRequest (requestor, selection);

requestor Specifiesthe widget making the request. Must be
of class Core or any subclass thereof.

selection Specifies the particular selection desired.

When Xt Cr eat eSel ecti onRequest iscalled, subsequent callsto Xt Get Sel ect i onVal ue,
Xt Get Sel ecti onVal uel ncrenent al , Xt Get Sel ecti onVal ues, and
Xt Get Sel ecti onVal uesl ncrenent al , with the requestor and selection as specified to
Xt Creat eSel ecti onRequest , are bundled into a single selection request with multiple targets.
The request is made by calling Xt SendSel ect i onRequest .

voi d Xt SendSel ecti onRequest (requestor, selection, tinme);

requestor Specifiesthe widget making the request. Must be
of class Core or any subclass thereof.

selection Specifies the particular selection desired.

time Specifies the timestamp that indicates when

the selection request was initiated. The value
Cur rent Ti me isnot acceptable.

When Xt SendSel ecti onRequest is caled with a value of reguestor and selection
matching a previous call to Xt CreateSel ecti onRequest, a selection request is
sent to the sdection owner. If a single target request is queued, that request is
made. If multiple targets are queued, they are bundled into a single request with a
target of MULTIPLE using the specified timestamp. As the values are returned, the
callbacks specified in Xt Get Sel ecti onVal ue, Xt Get Sel ecti onVal uel ncrenent al ,
Xt Get Sel ecti onVal ues, and Xt Get Sel ecti onVal uel ncr enent al are invoked.

Multi-threaded applications should lock the application context before
caling Xt Creat eSel ecti onRequest and release the lock after caling
Xt SendSel ecti onRequest to ensure that the thread assembling the request is safe from
interference by another thread assembling a different request naming the same widget and selection.

184

Utility Functions

To relinquish the composition of a MULTIPLE request without sending it, use
Xt Cancel Sel ecti onRequest .

voi d Xt Cancel Sel ecti onRequest (requestor, sel ection);

requestor Specifiesthe widget making the request. Must be
of class Core or any subclass thereof.

selection Specifies the particular selection desired.

When Xt Cancel Sel ecti onRequest is caled, any requests queued since the last call to
Xt Cr eat eSel ecti onRequest for the samewidget and selection are discarded and any resources
reserved are released. A subsequent call to Xt SendSel ecti onRequest will not result in any
request being made. Subsequent callsto Xt Get Sel ect i onVal ue, Xt Get Sel ect i onVal ues,
Xt Get Sel ecti onVal uel ncrenent al , or Xt Get Sel ecti onVal uesl ncrenent al will
not be deferred.

Auxiliary Selection Properties

Certain uses of parameterized selections require clients to name other window properties within a
selection parameter. To permit reuse of temporary property names in these circumstances and thereby
reduce the number of unique atoms created in the server, the Intrinsics provides two interfaces for
acquiring temporary property names.

To acquire a temporary property name atom for use in a selection request, the client may call
Xt ReservePropert yAtom

At om Xt Reser vePropertyAtomw);
w Specifies the widget making a selection request.

Xt Reser vePr opert yAt omreturns an atom that may be used as a property name during selection
requestsinvolving the specified widget. Aslong asthe atom remainsreserved, it isunique with respect
to al other reserved atoms for the widget.

To return a temporary property name atom for reuse and to delete the property named by that atom,
use Xt Rel easePr opert yAt om

voi d Xt Rel easePropertyAtom(w, atom;

w Specifies the widget used to reserve the property name atom.

atom Specifies the property name atom returned by
Xt Reser vePr opert yAt om that is to be released for
reuse.

Xt Rel easePr opert yAt om marks the specified property name atom as no longer in use and
ensures that any property having that name on the specified widget's window is deleted. If atom does
not specify a value returned by Xt Reser vePr opert yAt omfor the specified widget, the results
are undefined.

Retrieving the Most Recent Timestamp

To retrieve the timestamp from the most recent call to Xt Di spat chEvent that contained a
timestamp, use Xt Last Ti mest anpPr ocessed.

Ti me Xt Last Ti mest anpProcessed(di spl ay) ;

display Specifies an open display connection.

185

Utility Functions

If no KeyPress, KeyRel ease, ButtonPress, ButtonRel ease, MdtionNotify,
EnterNotify,LeaveNotify,PropertyNotify,orSel ecti onCl ear event hasyet been
passedto Xt Di spat chEvent for the specified display, Xt Last Ti nest anpPr ocessed returns
zero.

Retrieving the Most Recent Event

To retrieve the event from the most recent call to Xt Di spat chEvent for a specific display, use
Xt Last Event Processed.

XEvent *XtLast Event Processed(di spl ay);

display Specifies the display connection from which to
retrieve the event.

Returns the last event passed to Xt Di spat chEvent for the specified display. Returns NULL if
there is no such event. The client must not modify the contents of the returned event.

Merging Exposure Events into a Region

The Intrinsics provide an Xt AddExposur eToRegi on utility function that merges Expose and
Graphi csExpose events into a region for clients to process at once rather than processing
individual rectangles. For further information about regions, see Manipulating Regionsin Xlib — C
Language X Interface.

TomergeExpose andGr aphi csExpose eventsintoaregion, use Xt AddExposur eToRegi on.
voi d Xt AddExposur eToRegi on(event, region);

event Specifies a pointer to the Expose or
Gr aphi csExpose event.

region Specifies the region object (as defined in <X11/
Xutil . h>).

The Xt AddExposur eToRegi on function computes the union of the rectangle defined by the
exposure event and the specified region. Then it storestheresultsback inregion. If the event argument
isnot an Expose or Gr aphi csExpose event, Xt AddExposur eToRegi on returns without an
error and without modifying region.

This function is used by the exposure compression mechanism; see the section called “Exposure
Compression”

Translating Widget Coordinates

To translate an x-y coordinate pair from widget coordinates to root window absol ute coordinates, use
Xt Tr ansl at eCoor ds.

voi d Xt Transl at eCoords(w, x, y, rootx_return, rooty_return);

w Specifies the widget. Must be of class
RectObj or any subclass thereof.

y Specify the widget-relative x and y
coordinates.

rootx_return

186

Utility Functions

rooty return Return the root-relative x and y
coordinates.

WhileXt Tr ans| at eCoor ds issimilartothe Xlib XTr ans| at eCoor di nat es function, it does
not generate a server request because all the required information already is in the widget's data
structures.

Translating a Window to a Widget

To trandate a given window and display pointer into awidget instance, use Xt W ndowToW dget .
W dget Xt W ndowToW dget (di spl ay, w ndow);

display Specifies the display on which the window is defined.
window Specifiesthe drawablefor which you want the widget.

If there is a realized widget whose window is the specified drawable on the specified display,
Xt W ndowToW dget returns that widget. If not and if the drawable has been associated with
a widget through Xt Regi st er Dr awabl e, Xt W ndowToW dget returns the widget associated
with the drawable. In other casesit returns NULL.

Handling Errors

The Intrinsics alow a client to register procedures that are called whenever afatal or nonfatal error
occurs. These facilities are intended for both error reporting and logging and for error correction or
recovery.

Two levels of interface are provided:

* A high-level interface that takes an error name and class and retrieves the error message text from
an error resource database.
» A low-level interface that takes a simple string to display.

The high-level functions construct a string to pass to the lower-level interface. The strings may be
specified in application code and are overridden by the contents of an external systemwide file, the
“error database file”. The location and name of this file are implementation-dependent.

Note

The application-context-specific error handling is not implemented on many systems,
although the interfaces are aways present. Most implementations will have just one set
of error handlers for al application contexts within a process. If they are set for different
application contexts, the ones registered last will prevail.

To obtain the error database (for example, to merge with an application- or widget-specific database),
use Xt AppCet Er r or Dat abase.

Xr mDat abase * Xt AppCet Er r or Dat abase(app_cont ext) ;
app_context Specifies the application context.

The Xt AppGCet Er r or Dat abase function returns the address of the error database. The Intrinsics
do alazy binding of the error database and do not merge in the database file until the first call to
Xt AppCet Er r or Dat abaseText .

For a complete listing of all errors and warnings that can be generated by the Intrinsics, see
Appendix D, Intrinsics Error Messages

187

Utility Functions

The high-level error and warning handler procedure pointers are of type
(* Xt Error MsgHandl er) .

typedef void (*XtErrorMgHandl er)(name, type, class, defaultp,
paranms, num parans);

name Specifiesthe nameto be concatenated with the
specified typeto form the resource name of the

Eror message.

type Specifies the type to be concatenated with the
name to form the resource name of the error

message.

class Specifies the resource class of the error
message.

defaultp Specifiesthe default message to useif no error
database entry is found.

arams ecifies apointer to alist of parametersto be
p f pointer toalist of p etersto b
substituted in the message.

num_params Specifies the number of entriesin params.

The specified name can be ageneral kind of error, like “invalidParameters’ or “invalidwindow”, and
the specified type gives extra information such as the name of the routine in which the error was
detected. Standard pr i nt f notation is used to substitute the parameters into the message.

An error message handler can obtain the error database text for an error or a warning by calling
Xt AppGet Er r or Dat abaseText .

void Xt AppGet Error Dat abaseText (app_context, nane, type, class,
default, buffer_return, nbytes, database);

app_context Specifies the application context.

name, type Specify the name and type concatenated
to form the resource name of the error
message.

class Specifies the resource class of the error
message.

default Specifies the default message to useif an

error database entry is not found.

buffer_return Specifies the buffer into which the error
message is to be returned.

nbytes Specifies the size of the buffer in bytes.

database Specifies the name of the alternative
database to be used, or NULL if the
application context's error database is to
be used.

The Xt AppCet Er r or Dat abaseText returnsthe appropriate message from the error database or
returns the specified default messageif oneisnot found in the error database. To form thefull resource
name and class when querying the database, the name and type are concatenated with a single “.”
between them and the class is concatenated with itself with asingle “.” if it does not already contain

a ..

188

Utility Functions

To return the application name and class as passed to Xt Di spl ayl ni ti al i ze for a particular
Display, use Xt Get Appl i cat i onNaneAndd ass.

voi d Xt Get Appl i cat i onNanmeAndd ass(di spl ay, nane_r et urn,
class_return);

display Specifies an open display connection
that has been initidized with
Xt Di splaylnitialize.

name return Returns the application name.

class return Returns the application class.

Xt Get Appl i cat i onNanmeAndCl ass returns the application name and class passed to
Xt Di splaylnitialize forthe specified display. If the display was never initialized or has been
closed, the result is undefined. The returned strings are owned by the Intrinsics and must not be
modified or freed by the caller.

To register aprocedure to be called on fatal error conditions, use Xt AppSet Er r or MsgHandl er .

Xt Err or MsgHandl er Xt AppSet Er r or MsgHandl er (app_cont ext,
nsg_handl er);

app_context Specifies the application context.
msg_handler Specifies the new fatal error procedure,

which should not return.

Xt AppSet Err or MsgHandl er returns a pointer to the previously installed high-level fatal
error handler. The default high-level fatal error handler provided by the Intrinsics is named
_ Xt Defaul t Error Msg and constructs a string from the error resource database and calls
Xt Er r or . Fatal error message handlers should not return. If one does, subsequent Intrinsics behavior
is undefined.

To call the high-level error handler, use Xt AppEr r or Msg.

voi d Xt AppError Msg(app_context, name, type, class, default, parans,
num par ans) ;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.
class Specifies the resource class.

default Specifies the default message to use if an

error database entry is not found.

params Specifies a pointer to a list of values to be
stored in the message.

num_params Specifies the number of entriesin params.
The Intrinsicsinterna errors all have class “XtToolkitError”.

To register a procedure to be «cdled on nonfaal error conditions, use
Xt AppSet War ni ngMsgHandl er .

Xt Err or MsgHandl er Xt AppSet War ni ngMsgHandl er (app_cont ext,
nsg_handl er);

189

Utility Functions

app_context Specifies the application context.

msg_handler Specifies the new nonfatal error procedure,
which usually returns.

Xt AppSet War ni ngMsgHandl| er returns a pointer to the previously installed high-level
warning handler. The default high-level warning handler provided by the Intrinsics is named
_Xt Def aul t War ni ngMsg and constructs a string from the error resource database and calls
Xt WAr ni ng.

To call theinstalled high-level warning handler, use Xt AppWar ni ngMsg.

voi d Xt AppWar ni ngMsg(app_cont ext, nane, type, cl ass, default, parans,
num par ans) ;

app_context Specifies the application context.

name Specifies the general kind of error.

type Specifies the detailed name of the error.
class Specifies the resource class.

default Specifies the default message to use if an

error database entry is not found.

params Specifies a pointer to a list of valuesto be
stored in the message.

num_params Specifies the number of entriesin params.
The Intrinsics internal warnings al have class “ XtToolkitError”.

The low-level error and warning handler procedure pointers are of type (* Xt Er r or Handl er) .
typedef void (*XtErrorHandl er) (nmessage);

message Specifies the error message.

The error handler should display the message string in some appropriate fashion.

To register a procedure to be called on fatal error conditions, use Xt AppSet Er r or Handl er .

Xt Error Handl er Xt AppSet Error Handl er (app_cont ext, handl er);

app_context Specifies the application context.

handler Specifies the new fatal error procedure,
which should not return.

Xt AppSet Er r or Handl er returnsapointer tothepreviously installed low-level fatal error handler.
The default low-level error handler provided by the Intrinsicsis _ Xt Def aul t Er r or . On POSI X-
based systems, it prints the message to standard error and terminates the application. Fatal error
message handlers should not return. If one does, subsequent Intrinsics behavior is undefined.

To call theinstalled fatal error procedure, use Xt AppEr r or .
voi d Xt AppError (app_context, nessage);
app_context Specifies the application context.

message Specifies the message to be reported.

190

Utility Functions

Most programs should use Xt AppEr r or Msg, not Xt AppEr r or , to provide for customization and
internationalization of error messages.

Toregister aprocedureto be called on nonfatal error conditions, use Xt AppSet War ni ngHandl er .
Xt Error Handl er Xt AppSet War ni ngHandl er (app_context, handl er);
app_context Specifies the application context.

handler Specifies the new nonfatal error procedure,
which usually returns.

Xt AppSet War ni ngHandl er returns a pointer to the previously installed low-level warning
handler. The default low-level warning handler provided by theIntrinsicsis_ Xt Def aul t \War ni ng.
On POSIX-based systems, it prints the message to standard error and returnsto the caller.

To call theinstalled nonfatal error procedure, use Xt App\War ni ng.

voi d Xt AppWar ni ng(app_cont ext, nmessage);

app_context Specifies the application context.
message Specifies the nonfatal error message to be
reported.

Most programs should use Xt AppWar ni ngMsg, not Xt AppWar ni ng, to providefor customization
and internationalization of warning messages.

Setting WM_COLORMAP_WINDOWS

A client may set the value of the WM _COLORMAP_WINDOWS property on awidget's window
by calling Xt Set WMCol or mapW ndows.

voi d Xt Set WMCol or mapW ndows(wi dget, |ist, count);

widget Specifies the widget on whose window the
WM_COLORMAP_WINDOWS property is stored.
Must be of class Core or any subclass thereof.

list Specifiesalist of widgetswhosewindowsare potentialy
to be listed in the WM_COLORMAP_WINDOWS
property.

count Specifies the number of widgetsin list.

Xt Set WMCol or mapW ndows returns immediately if widget is not realized or if count is O.
Otherwise, Xt Set WMCol or mapW ndows constructs an ordered list of windows by examining each
widget in list in turn and ignoring the widget if it is not realized, or adding the widget's window to
the window list if the widget is realized and if its colormap resource is different from the colormap
resources of all widgets whose windows are aready on the window list.

Finally, Xt Set WMCol or mapW ndows stores the resulting window list in the
WM_COLORMAP_WINDOWS property on the specified widget's window. Refer to Section
4.1.8 in the Inter-Client Communication Conventions Manual for details of the semantics of the
WM_COLORMAP_WINDOWS property.

Finding File Names

The Intrinsics provide procedures to look for afile by name, allowing string substitutionsin alist of
file specifications. Two routines are provided for this: Xt Fi ndFi | e and Xt Resol vePat hnane.

191

Utility Functions

Xt Fi ndFi | e uses an arbitrary set of client-specified substitutions, and Xt Resol vePat hnane
uses a set of standard substitutions corresponding to the X/Open Portability Guide language
localization conventions. Most applications should use Xt Resol vePat hnane.

A string substitution is defined by alist of Substi t uti on entries.

typedef struct {
char mat ch;
String substitution;
} SubstitutionRec, *Substitution;

File name evauation is handled in an operating-system-dependent fashion by an
(*Xt Fi | ePredi cat e) procedure.

typedef Bool ean (*XtFilePredicate)(fil ename);
filename Specifies a potentia filename.

A file predicate procedure is called with a string that is potentially afile name. It should return Tr ue
if this string specifies afile that is appropriate for the intended use and Fal se otherwise.

To search for afile using substitutionsin apath list, use Xt Fi ndFi | e.

char * Xt Fi ndFi | e(pat h, substitutions, num substi tutions,
predicate);

path Specifies a path of file names, including
substitution characters.

substitutions Specifies a list of substitutions to make
into the path.

num_substitutions Specifies the number of substitutions
passed in.

predicate Specifies a procedure called to judge

each potential file name, or NULL.

The path parameter specifies a string that consists of a series of potentia file names delimited by
colons. Within each name, the percent character specifiesastring substitution selected by thefollowing
character. The character sequence “%:" specifies an embedded colon that is not a delimiter; the
sequence is replaced by a single colon. The character sequence “%%" specifies a percent character
that does not introduce a substitution; the sequence is replaced by a single percent character. If a
percent character is followed by any other character, Xt Fi ndFi | e looks through the specified
substitutions for that character in the match field and, if found, replaces the percent and match
characterswith the string in the corresponding substitution field. A substitution field entry of NULL is
equivalent to apointer to an empty string. If the operating system does not interpret multiple embedded
name separators in the path (i.e., “/” in POSIX) the same way as a single separator, Xt Fi ndFi | e
will collapse multiple separators into a single one after performing all string substitutions. Except
for collapsing embedded separators, the contents of the string substitutions are not interpreted by
Xt Fi ndFi | e and may therefore contain any operating-system-dependent characters, including
additional name separators. Each resulting string is passed to the predicate procedure until astring is
found for which the procedure returns Tr ue; this string is the return value for Xt Fi ndFi | e. If no
string yieldsa Tr ue return from the predicate, Xt Fi ndFi | e returns NULL.

If the predicate parameter is NULL, an internal procedure that checks if the file exists, is readable,
and is not adirectory is used.

It is the responsibility of the caller to free the returned string using Xt Fr ee when it is no longer
needed.

192

Utility Functions

To search for afile using standard substitutions in a path list, use Xt Resol vePat hnane.

char * XtResol vePat hnane(di splay, type, filenane, suffix, path,
substitutions, numsubstitutions, predicate);

display Specifies the display to use to find the
language for language substitutions.

type

filename

suffix Specify valuesto substitute into the path.

path Specifiesthe list of file specifications, or
NULL.

substitutions Specifiesalist of additional substitutions
to make into the path, or NULL.

num_substitutions Specifies the number of entries in
substitutions.

predicate Specifies a procedure called to judge

each potential file name, or NULL.

The substitutions specified by Xt Resol vePat hnane aredetermined from thevalue of the language
string retrieved by Xt Di spl ayl ni ti al i ze for the specified display. To set the language for all
applications specify “*xnlLanguage: lang” in the resource database. The format and content of the
language string are implementation-defined. One suggested syntax is to compose the language string
of three parts; a “language part”, a “territory part” and a “codeset part”. The manner in which this
composition is accomplished is implementation-defined, and the Intrinsics make no interpretation of
the parts other than to use them in substitutions as described below.

Xt Resol vePat hnane cals Xt Fi ndFi | e with the following substitutions in addition to any
passed by the caller and returns the value returned by Xt Fi ndFi | e:

%N The value of the filename parameter, or the application's class name if filename
isNULL.

%T The value of the type parameter.

%S The value of the suffix parameter.

%L The language string associated with the specified display.

%l The language part of the display's language string.

%ot The territory part of the display's language string.

%cC The codeset part of the display's language string.

%C The customization string retrieved from the resource database associated with
display.

%D The value of the implementation-specific default path.

If a path is passed to Xt Resol vePat hnane, it is passed along to Xt Fi ndFi | e. If the path
argument is NULL, the value of the XFILESEARCHPATH environment variable is passed to
Xt Fi ndFi | e. If XFILESEARCHPATH isnot defined, an implementati on-specific default path is
used that contains at least six entries. These entries must contain the following substitutions:

193

Utility Functions

UC, N, U5, W, %A or U, W, U5, W, %N, %, %
9uC, W, U5, W, %

uC, W, U5, o

ON, %5, %, %A or W, U5, W, %N, %, %
W, U5, W, %

N, o5, %

ook wWNE

Theorder of these six entrieswithin the path must be as given above. The order and use of substitutions
within a given entry are implementation-dependent. If the path begins with a colon, it is preceded by
%N%S. If the path includes two adjacent colons, Y0NS is inserted between them.

Thetype parameter isintended to be a category of files, usually being trandated into adirectory in the
pathname. Possible values might include “app-defaults’, “help”, and “bitmap”.

The suffix parameter isintended to be appended to the file name. Possible values might include “ .txt”,
“.dat”, and “.bm”.

A suggested value for the default path on POSIX-based systemsis

fusr/libl X11/ %/ 9%/ 9YNACYS: / usr/ i b/ X11/ % / 9/ YNUCYS: \
fusr/libl X11/ %/ 9NVECYS: [usr/ i b/ X11/ %/ %/ YNYS: \
fusr/libl X11/ % /9%l 9NYS: / usr/ i b/ X11/ %/ 9YNYS

Using this example, if the user has specified alanguage, it is used as a subdirectory of /usr/lib/X11
that is searched for other files. If the desired file is not found there, the lookup is tried again using just
the language part of the specification. If the file is not there, it islooked for in /usr/lib/X11. The type
parameter is used as a subdirectory of the language directory or of /usr/lib/X11, and suffix is appended
to the file name.

The %D substitution allows the addition of path el ements to the implementation-specific default path,
typicaly to allow additional directories to be searched without preventing resources in the system
directories from being found. For example, a user installing resource files under a directory called
“ourdir” might set XFILESEARCHPATH to

%D: our di r/ %/ 9NC: our di r/ %/ 9N

The customization string is obtained by querying the resource database currently
associated with the display (the database returned by Xr net Dat abase) for the resource
application_name.customization, class application_class.Customization, where application_name
and application_class are the values returned by Xt Get Appl i cati onNanmeAndCl ass. If no
value is specified in the database, the empty string is used.

It is the responsibility of the caller to free the returned string using Xt Fr ee when it is no longer
needed.

Hooks for External Agents

Applications may register functionsthat are called at aparticular control pointsin the Intrinsics. These
functions are intended to be used to provide natification of an “X Toolkit event”, such as widget
creation, to an external agent, such as an interactive resource editor, drag-and-drop server, or an aid
for physically challenged users. The control points containing such registration hooks are identified
in a“hook registration” object.

To retrieve the hook registration widget, use Xt HooksCf Di spl ay.
W dget Xt HooksOf Di spl ay(di spl ay);

display Specifies the desired display.

194

Utility Functions

The class of this object isaprivate, implementation-dependent subclass of Cbj ect . The hook object
has no parent. The resources of this object are the callback lists for hooks and the read-only resources
for getting a list of parentless shells. All of the callback lists are initially empty. When a display is
closed, the hook object associated with it is destroyed.

The following procedures can be called with the hook registration object as an argument:

e Xt AddCal | back, Xt AddCal | backs, Xt RenoveCal | back, Xt RenoveCal | backs,
Xt RenoveAl | Cal | backs, Xt Cal | Cal | backs, Xt HasCal | backs,
Xt Cal | Cal | backLi st

e Xt ass, XtSuperclass, XtlsSubclass, XtCheckSubclass, XtlsObject,
Xt1sRect Obj, XtlsWdget, XtlsConposite, XtlsConstraint, XtlsShell,
Xt1sOverrideShel |, XtlsWbBhel |, XtlsVendor Shel I, Xt|sTransi ent Shel |,
Xt 1 sTopLevel Shel | , Xt 1 sApplicationShell,XtlsSessi onShel l

e Xt Wdget ToAppl i cati onCont ext

e Xt Nane, Xt Par ent , Xt Di spl ayOf Qbj ect, Xt Scr eenOF Obj ect

e Xt Set Val ues, Xt Get Val ues, Xt VaSet Val ues, Xt VaGet Val ues

Hook Object Resources

The resource names, classes, and representation types that are specified in the hook object resource

list are:

Name Class Representation
XtNcreateHook XtCCallback XtRCallback
XtNchangeHook XtCCallback XtRCallback
XtNconfigureHook XtCCallback XtRCallback
XtNgeometryHook XtCCallback XtRCallback
XtNdestroyHook XtCCallback XtRCallback
XtNshells XtCReadOnly XtRWidgetList
XtNnumShells XtCReadOnly XtRCardinal

Descriptions of each of these resources:

The XtNcreateHook callback list is called from: Xt Cr eat eW dget ,
Xt Cr eat eManagedW dget, Xt Creat ePopupShel |, Xt AppCreat eShel I, and their
corresponding varargs versions.

The call_data parameter in a createHook callback may be cast to type Xt Cr eat eHookDat a.

typedef struct {
String type;
W dget wi dget ;
ArgLi st args;
Cardi nal num args;
} Xt Creat eHookDat aRec, * Xt Creat eHookDat a;

The typeis set to Xt Hcr eat e, widget is the newly created widget, and args and num_args are the
arguments passed to the create function. The callbacks are called before returning from the create
function.

The XtNchangeHook callback list is called from:

» Xt Set Val ues, Xt VaSet Val ues
e Xt ManageChi | d, Xt ManageChi | dr en, Xt UnmanageChi | d, Xt UnmanageChi | dr en
e Xt Real i zeW dget, Xt Unreal i zeW dget

195

Utility Functions

» Xt AddCal | back, Xt RenoveCal | back, Xt AddCal | backs, XtRenoveCal | backs,
Xt RenoveAl | Cal | backs

e Xt Augnent Transl ati ons, Xt OverrideTransl ati ons,
Xt Uni nstal | Transl ati ons

* Xt Set Keyboar dFocus, Xt Set WMCol or mapW ndows

* Xt Set MappedWhenManaged, Xt MapW dget , Xt UnmapW dget

e Xt Popup, Xt PopupSpri ngLoaded, Xt Popdown

The call_data parameter in a changeHook callback may be cast to type Xt ChangeHookDat a.

t ypedef struct {

String type;

W dget wi dget ;

Xt Poi nt er event data;

Car di nal num event dat a;

} Xt ChangeHookDat aRec, * Xt ChangeHookDat a;
When the changeHook callbacks are caled as a result of a call to Xt SetVal ues or

Xt VaSet Val ues, typeissetto Xt Hset Val ues, widget isthe new widget passed to the set_values
procedure, and event_data may be cast to type Xt ChangeHook Set Val uesDat a.

t ypedef struct {

W dget old, req;
Ar gLi st args;
Car di nal num ar gs;

} Xt ChangeHookSet Val uesDat aRec, * Xt ChangeHookSet Val uesDat a;

Theold, reg, args, and num_args are the parameters passed to the set_values procedure. The callbacks
are called after the set_values and constraint set_values procedures have been called.

When the changeHook callbacks are called as a result of a call to Xt ManageChild or
Xt ManageChi | dr en, typeissetto Xt HmanageChi | dr en, widget isthe parent, event_data may
be cast to type WidgetList and isthelist of children being managed, and num_event_data isthelength
of the widget list. The callbacks are called after the children have been managed.

When the changeHook callbacks are caled as a result of a call to Xt UnnmanageChil d or
Xt UnmanageChi | dr en, typeissetto Xt HunmanageChi | dr en, widget isthe parent, event_data
may be cast to type WidgetList and isalist of the children being unmanaged, and num_event_data is
the length of the widget list. The callbacks are called after the children have been unmanaged.

The changeHook callbacks are called twice as a result of a call to Xt ChangeManagedSet , once
after unmanaging and again after managing. When the callbacks are called thefirst time, typeisset to
Xt HunmanageSet , widget is the parent, event_data may be cast to type WidgetList and is alist of
the children being unmanaged, and num_event_data isthelength of thewidget list. When the callbacks
are called the second time, the type is set to Xt HhanageSet , widget is the parent, event_data may
be cast to type WidgetList and is a list of the children being managed, and num_event_data is the
length of the widget list.

When the changeHook callbacks are called as aresult of acall to Xt Real i zeW dget , thetypeis
setto Xt Hr eal i zeW dget and widget is the widget being realized. The callbacks are called after
the widget has been realized.

When the changeHook callbacks are called asaresult of acall to Xt Unr eal i zeW dget , thetypeis
setto Xt Hunr eal i zeW dget , and widget is the widget being unrealized. The callbacks are called
after the widget has been unrealized.

When the changeHook callbacks are called as aresult of acall to Xt AddCal | back, typeis set to
Xt HaddCal | back, widget is the widget to which the callback is being added, and event_data may

196

Utility Functions

be cast to type String and is the name of the callback being added. The callbacks are called after the
callback has been added to the widget.

When the changeHook callbacks are called as aresult of acall to Xt AddCal | backs, thetypeisset
toXt HaddCal | backs, widget isthe widget to which the callbacks are being added, and event_data
may be cast to type String and is the name of the callbacks being added. The callbacks are called after
the callbacks have been added to the widget.

When the changeHook callbacks are called as aresult of acall to Xt RenoveCal | back, thetypeis
set to Xt Hr enoveCal | back, widget is the widget from which the callback is being removed, and
event_data may be cast to type String and is the name of the callback being removed. The callbacks
are called after the callback has been removed from the widget.

When the changeHook callbacks are called as aresult of acall to Xt RenoveCal | backs, the type
issetto Xt Hr enpveCal | backs, widget isthe widget from which the callbacks are being removed,
and event_data may be cast to type String and is the name of the callbacks being removed. The
callbacks are called after the callbacks have been removed from the widget.

When the changeHook callbacks are called as aresult of acall to Xt RenoveAl | Cal | backs, the
typeis set to Xt Hr enoveAl | Cal | backs and widget is the widget from which the callbacks are
being removed. The callbacks are called after the callbacks have been removed from the widget.

When the changeHook callbacks are called asaresult of acall to Xt Augnent Tr ansl at i ons, the
typeisset to Xt Haugrent Tr ansl at i ons and widget is the widget whose tranglations are being
modified. The callbacks are called after the widget's trand ations have been modified.

When the changeHook callbacks are called as aresult of acall to Xt Overri deTransl ati ons,
the type is set to Xt Hover ri deTr ansl at i ons and widget is the widget whose trandations are
being modified. The callbacks are called after the widget's trangl ations have been modified.

When the changeHook callbacks are called as aresult of acall to Xt Uni nst al | Transl ati ons,
ThetypeisXt Huni nst al | Tr ansl at i ons and widget is the widget whose trandlations are being
uninstalled. The callbacks are called after the widget's tranglations have been uninstalled.

When the changeHook callbacks are called asaresult of acall to Xt Set Keyboar dFocus, thetype
issetto Xt Hset Keyboar dFocus and event_data may be cast to type Widget and isthe value of the
descendant argument passed to Xt Set Keyboar dFocus. The callbacks are called before returning
from Xt Set Keyboar dFocus.

When the changeHook callbacks are called as a result of a call to Xt Set WMCol or mapW ndows,
type is set to Xt Hset WMCol or mapW ndows, event_data may be cast to type WidgetList and is
the value of the list argument passed to Xt Set WMCol or mapW ndows, and num_event_data isthe
length of the list. The callbacks are called before returning from Xt Set WMCol or mapW ndows.

When the changeHook callbacks are called as aresult of a call to Xt Set MappedWhenManaged,
thetypeissetto Xt Hset MappedWhenManaged and event_data may be cast to type Boolean and is
the value of the mapped_when_managed argument passed to Xt Set MappedwWhenManaged. The
callbacks are called after setting the widget's mapped_when_managed field and before realizing or
unrealizing the widget.

When the changeHook callbacks are called as a result of a call to Xt MapW dget , the type is set
to Xt HmapW dget and widget is the widget being mapped. The callbacks are called after mapping
the widget.

When the changeHook callbacks are called as a result of a cal to Xt UnmapW dget , the type is
set to Xt HunmapW dget and widget is the widget being unmapped. The callbacks are called after
unmapping the widget.

When the changeHook callbacks are called as a result of a cal to Xt Popup, the type is set to
Xt Hpopup, widget is the widget being popped up, and event_data may be cast to type XtGrabKind

197

Utility Functions

and is the value of the grab _kind argument passed to Xt Popup. The callbacks are called before
returning from Xt Popup.

When the changeHook callbacks are called as a result of a call to Xt PopupSpr i ngLoaded, the
typeis set to Xt HpopupSpr i ngLoaded and widget is the widget being popped up. The callbacks
are called before returning from Xt PopupSpr i ngLoaded.

When the changeHook callbacks are called as a result of a call to Xt Popdown, the type is set to
Xt Hpopdown and widget isthe widget being popped down. The callbacks are called before returning
from Xt Popdown.

A widget set that exports interfaces that change application state without employing the Intrinsics
library should invoke the change hook itself. Thisis done by:

Xt Cal | Cal | backs(Xt HooksOf Di spl ay(dpy), Xt NchangeHook, call _data);

The XtNconfigureHook callback list is called any time the Intrinsics move, resize, or configure a
widget and when Xt Resi zeW ndowis called.

The call_data parameter may be cast to type Xt Conf i gur eHookDat a.

typedef struct {
String type;
W dget wi dget ;
Xt GeonetryMask changeMask;
XW ndowChanges changes;
} Xt Confi gur eHookDat aRec, * Xt Confi gur eHookDat a;

When the configureHook callbacksare called, thetypeis Xt Hconf i gur e, widget isthewidget being
configured, and changeMask and changes reflect the changes made to the widget. The callbacks are
called after changes have been made to the widget.

The XtNgeometryHook callback list is caled from Xt MakeGeonetryRequest and
Xt MakeResi zeRequest once before and once after geometry negotiation occurs.

The call_data parameter may be cast to type Xt Geonet r yHookDat a.

typedef struct {
String type;
W dget wi dget ;
Xt W dget Geonet ry* request;
Xt W dget Geonetry* reply;
Xt Geonet ryResult result;
} Xt Geonet ryHookDat aRec, * Xt Geonet r yHookDat a;

When the geometryHook callbacks are called prior to geometry negotiation, the type is
Xt Hpr eGeonet ry, widget is the widget for which the request is being made, and request is the
requested geometry. When the geometryHook callbacks are called after geometry negotiation, the
type is Xt Hpost Geonet ry, widget is the widget for which the request was made, request is the
requested geometry, reply is the resulting geometry granted, and result is the value returned from the
geometry negotiation.

The XtNdestroyHook callback list is called when awidget isdestroyed. The call_data parameter may
be cast to type Xt Dest r oyHookDat a.

typedef struct {

198

Utility Functions

String type;
W dget wi dget;
} Xt DestroyHookDat aRec, * Xt DestroyHookDat a;

When the destroyHook callbacks are called as aresult of acall to Xt Dest r oyW dget , thetypeis
Xt Hdest r oy and widget is the widget being destroyed. The callbacks are called upon completion
of phase one destroy for awidget.

The XtNshells and XtNnumShells are read-only resources that report a list of all parentless shell
widgets associated with a display.

Clients who use these hooks must exercise caution in caling Intrinsics functions in order to avoid
recursion.

Querying Open Displays
Toretrieve alist of the Displays associated with an application context, use Xt Get Di spl ays.

voi d Xt Get Di spl ays(app_context, dpy_return, numdpy_return);

app_context Specifies the application context.

dpy_return Returns a list of open Display
connections in the specified application
context.

num_dpy_return Returns the count of open Display

connectionsin dpy_return.

Xt Get Di spl ays may be used by an external agent to query the list of open displays that belong to
an application context. To free thelist of displays, use Xt Fr ee.

199

Chapter 12. Nonwidget Objects

Although widget writers are free to treat Core as the base class of the widget hierarchy, there are
actually three classes above it. These classes are Object, RectObj (Rectangle Object), and (unnamed),
and members of these classes are referred to generically as objects. By convention, the term widget
refers only to objects that are a subclass of Core, and the term nonwidget refers to objects that are not
a subclass of Core. In the preceding portion of this specification, the interface descriptions indicate
explicitly whether the generic widget argument isrestricted to particular subclasses of Object. Sections
12.2.5,12.3.5, and 12.5 summarize the permissible classes of the argumentsto, and return valuesfrom,
each of the Intrinsics routines.

Data Structures

In order not to conflict with previouswidget code, the data structures used by nonwidget objects do not
follow all the same conventions as those for widgets. In particular, the class records are not composed
of parts but instead are complete data structures with filler for the widget fields they do not use. This
allowsthe static classinitializers for existing widgets to remain unchanged.

Object Objects

The Object object contains the definitions of fields common to al objects. It encapsulates the
mechanisms for resource management. All objects and widgets are members of subclasses of Object,
which is defined by the Obj ect Gl assPart and Obj ect Part structures.

ObjectClassPart Structure

The common fields for all object classes are defined in the Obj ect O assPart structure. All fields
have the same purpose, function, and restrictions as the corresponding fields in Cor eCl assPart ;
fields whose names are objn for some integer n are not used for Object, but exist to pad the data
structure so that it matches Core's class record. The class record initialization must fill all objn fields
with NULL or zero as appropriate to the type.

typedef struct _(Objectd assPart {

W dget Cl ass super cl ass;
String cl ass_nane;

Car di nal wi dget _si ze;

Xt Proc class_initialize;
Xt Wdget Cl assProc class _part_initialize;
Xt Enum class_inited;
XtlnitProc initialize;

Xt ArgsProc initialize_hook;
Xt Proc obj 1;

Xt Poi nt er obj 2;

Car di nal obj 3;

Xt Resour ceLi st resources;

Car di nal num r esour ces;
XrnC ass xrm cl ass;

Bool ean obj 4;

Xt Enum obj 5;

Bool ean obj 6;

Bool ean obj 7;

Xt W dget Proc destroy;

Xt Proc obj 8;

Xt Proc obj 9;

200

Nonwidget Objects

Xt Set Val uesFunc set _val ues;

Xt Ar gsFunc set _val ues_hook;
Xt Proc obj 10;

Xt ArgsProc get _val ues_hook;
Xt Proc obj 11;

Xt Ver si onType versi on;

Xt Poi nt er cal | back_private;
String obj 12;

Xt Proc obj 13;

Xt Proc obj 14;

Xt Poi nt er ext ensi on;

} ojectd assPart;

The extension record defined for Cbj ect C assPart witharecord_type equal to NULLQUARK

isObj ect Cl assExt ensi onRec.

typedef struct {

Xt Poi nt er next _extension; See
XrmQuark record_type; See
| ong version; See
Cardi nal record_si ze; See
Xt Al |l ocat eProc all ocate; See
Xt Deal | ocat eProc deal | ocat e; See

} Ooj ect d assExt ensi onRec, *hj ect d assExt ensi on;

t he
t he
t he
t he
t he
t he

secti
secti
secti
secti
secti
secti

The prototypical Obj ect Cl ass consists of just the Obj ect Cl assPart .

typedef struct _Cbjectd assRec {
nj ect A assPart obj ect _cl ass;
} njectd assRec, *bjectd ass;

The predefined class record and pointer for Obj ect Cl assRec are

InlntrinsicP.h:

extern Obj ectd assRec object d assRec;

Inlntrinsic.h:

extern Wdget d ass obj ectd ass;

on
on
on
on
on
on

cal l ed
cal l ed
cal l ed
cal l ed
cal l ed
cal l ed

“Cl ass Extensio
“Cl ass Extensio
“Cl ass Extensio
“Cl ass Extensio

“W dget
“W dget

The opaguetypes Obj ect and Obj ect O ass and the opaquevariableobj ect Cl ass aredefined
for generic actions on objects. The symbolic constant for the Cbj ect Cl assExt ensi on version
identifier is Xt Obj ect Ext ensi onVer si on (see the section called “ Class Extension Records”).
I ntrinsic. h usesanincomplete structure definition to ensure that the compiler catches attempts

to access private data:

typedef struct _CObjectC assRec* (bjectd ass;

ObjectPart Structure

The common fields for all object instances are defined in the Obj ect Par t structure. All fields have

the same meaning as the corresponding fields in Cor ePar t .

201

I nst anc
I nst anc

Nonwidget Objects

typedef struct _CbjectPart {

W dget sel f;

W dget Cl ass wi dget _cl ass;

W dget par ent ;

Bool ean bei ng_destroyed;
Xt Cal | backLi st destroy_cal | backs;
Xt Poi nt er constraints;

} ojectPart;

All object instances have the Object fields as their first component. The prototypical type Obj ect is
defined with only this set of fields. Various routines can cast object pointers, as needed, to specific
object types.

Inl ntrinsicP. h:

typedef struct _CbjectRec {
nj ect Part obj ect;
} ojectRec, *bject;

Inlntrinsic. h:

typedef struct _CbjectRec *Object;

Object Resources

The resource names, classes, and representation types specified in the obj ect Cl assRec resource

list are:
Name Class Representation
XtNdestroyCallback XtCCallback XtRCallback

ObjectPart Default Values

All fieldsin Qbj ect Par t have the same default values as the corresponding fieldsin Cor ePar t .

Object Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures may be obj ect Cl ass or any subclass:

e XtlnitializeWdgetd ass, Xt Creat eW dget , Xt VaCr eat eW dget
e Xt | sSubcl ass, Xt CheckSubcl ass
* Xt Get Resour celi st, Xt Get Constr ai nt Resour celi st

The Widget arguments to the following procedures may be of class Object or any subclass:

e Xt Creat eW dget , Xt VaCr eat eW dget

* Xt AddCal | back, Xt AddCall backs, Xt RenoveCal |l back, XtRenoveCal |l backs,
Xt RenoveAl | Cal | backs, Xt Cal | Cal | backs, Xt HasCal | backs,
Xt Cal | Cal | backLi st

e Xt ass, XtSuperclass, XtlsSubclass, XtCheckSubclass, XtlsObject,
Xt1sRect Obj, XtlsWdget, XtlsConposite, XtlsConstraint, XtlsShell,
Xt1sOverrideShel |, XtlsWbBhel |, XtlsVendor Shel I, Xt|sTransi ent Shel |,
Xt 1 sTopLevel Shel | , Xt 1 sApplicationShell,XtlsSessi onShel |

e XtlsManaged, Xt | sSensitive (both will return Fal se if argument is not a subclass of
RectObj)

e XtlsReal i zed (returns the state of the nearest windowed ancestor if class of argument is not
asubclass of Core)

202

Nonwidget Objects

o Xt Wdget ToAppl i cat i onCont ext

o Xt Dest royW dget

o XtParent,XtDi splayOf Obj ect, Xt Scr eenOf Ohj ect , Xt W ndowOr Obj ect

e Xt Set Keyboar dFocus (descendant)

o Xt Get GC, Xt Rel easeCC

o Xt Name

* Xt Set Val ues, Xt Get Val ues, Xt VaSet Val ues, Xt VaGet Val ues

o Xt Get Subresources, Xt GetApplicati onResources, XtVaGet Subresources,
Xt VaGet Appl i cati onResources

* Xt Convert, Xt Convert AndSt ore

The return value of the following procedures will be of class Object or a subclass:

» Xt Creat eW dget , Xt VaCr eat eW dget
o Xt Par ent
» Xt NanmeToW dget

The return value of the following procedures will be obj ect Cl ass or asubclass:

» Xt d ass, Xt Super cl ass

Use of Objects

The Object class exists to enable programmers to use the Intrinsics' classing and resource-handling
mechanisms for things smaller and simpler than widgets. Objects make obsolete many common uses
of subresources as described in Sections 9.4, 9.7.2.4, and 9.7.2.5.

Composite widget classes that wish to accept nonwidget children must set the accepts objects field
in the Conposi t ed assExt ensi on structure to True. Xt Cr eat eW dget will otherwise
generate an error message on an attempt to create a nonwidget child.

Of the classes defined by the Intrinsics, ApplicationShell and SessionShell accept nonwidget children,
and the class of any nonwidget child must not be r ect Gbj C ass or any subclass. The intent
of allowing Object children of ApplicationShell and SessionShell is to provide clients a simple
mechanism for establishing the resource-naming root of an object hierarchy.

Rectangle Objects

The class of rectangle objectsis a subclass of Object that represents rectangular areas. It encapsulates
the mechanisms for geometry management and is called RectObj to avoid conflict with the Xlib
Rect angl e datatype.

RectObjClassPart Structure

As with the Obj ect O assPart structure, al fieldsin the Rect Cbj O assPart structure have
the same purpose and function as the corresponding fieldsin Cor eCl assPar t ; fieldswhose names
are rectn for some integer n are not used for RectObj, but exist to pad the data structure so that it
matches Core's classrecord. The classrecord initialization must fill al rectn fieldswith NULL or zero
as appropriate to the type.

typedef struct _RectObjd assPart {

W dget Cl ass super cl ass;

String cl ass_nane;

Car di nal wi dget _si ze;

Xt Proc class_initialize;

Xt Wdget Cl assProc class _part_initialize;
Xt Enum class_inited;

203

Nonwidget Objects

XtlnitProc initialize;

Xt ArgsProc initialize_hook;
Xt Proc recti;

Xt Poi nt er rect2;

Car di nal rect3;

Xt Resour celLi st resources;

Car di nal num r esour ces;
XrnCl ass Xrm cl ass;
Bool ean rect4;

Xt Enum rectbs;

Bool ean rect 6;

Bool ean rect7v;

Xt W dget Proc destroy;

Xt W dget Proc resize;

Xt ExposePr oc expose,

Xt Set Val uesFunc set _val ues;

Xt Ar gsFunc set _val ues_hook;
Xt Al nost Proc set _val ues_al nost;
Xt ArgsProc get _val ues_hook;
Xt Proc rect9;

Xt Ver si onType versi on;

Xt Poi nt er cal | back_private;
String rect10;

Xt Geonet ryHandl er query_geonetry;
Xt Proc rect11,

Xt Poi nt er ext ensi on;

} Rect Obj Cl assPart;
The RectObj class record consists of just the Rect Obj Cl assPart .
typedef struct _Recthjd assRec {

Rect Obj d assPart rect _cl ass;
} Rect Obj O assRec, *Rect Obj d ass;

The predefined class record and pointer for Rect Cbj C assRec are

Inlntrinsic.h:

extern Rect Obj O assRec rect Cbj d assRec;

Inlntrinsic. h:

extern Wdget C ass rect Obj d ass;

The opaque types Rect Cbj and Rect Obj C ass and the opaque variable r ect bj C ass
are defined for generic actions on objects whose class is RectObj or a subclass of RectObj.
I ntrinsic. h usesanincomplete structure definition to ensure that the compiler catches attempts
to access private data:

typedef struct _Rectj d assRec* Rect Obj d ass;

RectObjPart Structure

In addition to the Obj ect Part fields, RectObj objects have the following fields defined in the
Rect Obj Part structure. All fields have the same meaning asthe corresponding fieldin Cor ePar t .

204

Nonwidget Objects

typedef struct _RectObjPart {

Posi tion X, Y;

Di nensi on wi dt h, hei ght;

Di mensi on bor der _wi dt h;

Bool ean managed;

Bool ean sensitive;

Bool ean ancestor_sensitive;

} Rect Obj Part;
RectObj objects have the RectObj fields immediately following the Object fields.
typedef struct _Rectj Rec {
bj ect Part obj ect;
Rect Cbj Part rectangl e;
} Rect Obj Rec, *Rect Qbj;

Inlntrinsic.h:

typedef struct _Rectj Rec* Rect Qbj;

RectObj Resources

The resource names, classes, and representation types that are specified inther ect Obj O assRec
resource list are:

Name Class Representation
XtNancestorSensitive XtCSensitive XtRBoolean
XtNborderWidth XtCBorderWidth XtRDimension
XtNheight XtCHeight XtRDimension
XtNsensitive XtCSensitive XtRBoolean
XtNwidth XtCWidth XtRDimension
XtNx XtCPosition XtRPosition
XtNy XtCPosition XtRPosition

RectObjPart Default Values

All fieldsin Rect Obj Par t have the same default values as the corresponding fieldsin Cor ePar't .

Widget Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures may ber ect Gbj Cl ass or any subclass:
* Xt Cr eat eManagedW dget , Xt VaCr eat eManagedW dget
The Widget arguments to the following procedures may be of class RectObj or any subclass:

e Xt Confi gureW dget , Xt MoveW dget , Xt Resi zeW dget

» Xt MakeGeonet r yRequest , Xt MakeResi zeRequest

« Xt ManageChi | dr en, Xt ManageChi | d, Xt UnmanageChi | dr en, Xt UnmanageChi | d,
Xt ChangeManagedSet

o Xt QueryGeonetry

205

Nonwidget Objects

e Xt SetSensitive
Xt Transl| at eCoor ds

The return value of the following procedures will be of class RectObj or a subclass:

» Xt Cr eat eManagedW dget , Xt VaCr eat eManagedW dget

Use of Rectangle Objects

RectObj can be subclassed to provide widgetlike objects (sometimes called gadgets) that do not use
windows and do not have those featuresthat are seldom used in simple widgets. This can save memory
resources both inthe server and in applications but requires additional support codeintheparent. Inthe
following discussion, rectobj refers only to objects whose class is RectObj or a subclass of RectObj,
but not Core or a subclass of Core.

Composite widget classes that wish to accept rectobj children must set the accepts objects field
in the Conposi t ed assExt ensi on extension structure to True. Xt Cr eat eW dget or
Xt Cr eat eManagedW dget will otherwise generate an error if called to create a nonwidget child.
If the composite widget supports only children of class RectObj or a subclass (i.e., not of the general
Object class), it must declare an insert_child procedure and check the subclass of each new child in
that procedure. None of the classes defined by the Intrinsics accept rectobj children.

If gadgets are defined in an object set, the parent is responsible for much more than the parent of a
widget. The parent must request and handle input events that occur for the gadget and is responsible
for making sure that when it receives an exposure event the gadget children get drawn correctly.
Rectobj children may have expose procedures specified in their class records, but the parent is free
to ignore them, instead drawing the contents of the child itself. This can potentially save graphics
context switching. The precise contents of the exposure event and region arguments to the RectObj
expose procedure are not specified by the Intrinsics; a particular rectangle object is free to define the
coordinate system origin (self-relative or parent-relative) and whether or not the rectangle or region
is assumed to have been intersected with the visible region of the object.

In general, it is expected that acomposite widget that accepts nonwidget children will document those
children it is able to handle, since a gadget cannot be viewed as a completely self-contained entity,
as can awidget. Since a particular composite widget class is usually designed to handle nonwidget
children of only a limited set of classes, it should check the classes of newly added children in its
insert_child procedure to make sure that it can deal with them.

The Intrinsics will clear areas of a parent window obscured by rectobj children, causing exposure
events, under the following circumstances:

* A rectobj child is managed or unmanaged.

e Inacal to Xt Set Val ues on arectobj child, one or more of the set_values procedures returns
Tr ue.

* Inacall to Xt Confi gur eW dget onarectobj child, areaswill be cleared corresponding to both
the old and the new child geometries, including the border, if the geometry changes.

* Inacall to Xt MoveW dget on arectobj child, areas will be cleared corresponding to both the old
and the new child geometries, including the border, if the geometry changes.

* Inacal toXt Resi zeW dget on arectobj child, asinglerectangle will be cleared corresponding
to the larger of the old and the new child geometriesif they are different.

e InacaltoXt MakeGeonet r yRequest (or Xt MakeResi zeRequest) on arectobj child with
Xt Quer yOnl y not set, if the manager returns Xt Geonet r y Yes, two rectangles will be cleared
corresponding to both the old and the new child geometries.

Stacking order is not supported for rectobj children. Composite widgets with rectobj children are free
to define any semantics desired if the child geometries overlap, including making this an error.

When a rectobj is playing the role of a widget, developers must be reminded to avoid making
assumptions about the object passed in the Widget argument to a callback procedure.

206

Nonwidget Objects

Undeclared Class

The Intrinsics define an unnamed class between RectObj and Core for possible future use by the X
Consortium. The only assumptions that may be made about the unnamed class are

» The core_class.superclass field of cor eW dget C assRec contains a pointer to the unnamed
class record.

» A pointer to the unnamed class record when dereferenced as an Qbj ect G ass will contain a
pointer tor ect Cbj C assRec initsobject_class.superclassfield.

Except for the above, the contents of the class record for this class and the result of an attempt to
subclass or to create awidget of this unnamed class are undefined.

Widget Arguments to Intrinsics Routines

The WidgetClass arguments to the following procedures must be of class Shell or a subclass:

» Xt Cr eat ePopupShel |, Xt VaCr eat ePopupShel | , Xt AppCr eat eShel |,
Xt VaAppCr eat eShel | , Xt OpenAppl i cati on, Xt VaOpenAppl i cati on

The Widget arguments to the following procedures must be of class Core or any subclass:

» Xt Cr eat ePopupShel |, Xt VaCr eat ePopupShel |

* Xt AddEvent Handl er, Xt AddRawEvent Handl er, Xt RemoveEvent Handl er,
Xt RenoveRawEvent Handl er, Xt | nsert Event Handl er,
Xt | nsert RawEvent Handl er Xt I nsert Event TypeHandl er,
Xt RenoveEvent TypeHandl er,

e Xt Regi st er Drawabl e Xt Di spat chEvent ToW dget

* Xt AddG ab, XtRenpveGrab, XtG abKey, XtG abKeyboard, XtUngrabKey,
Xt Ungr abKeyboard, XtG abButton, XtG abPointer, XtUngrabButton,
Xt Ungr abPoi nt er

e Xt Bui | dEvent Mask

e Xt Cr eat eW ndow, Xt Di spl ay, Xt Scr een, Xt W ndow

* Xt NameToW dget

e Xt Get Sel ecti onVal ue, Xt Get Sel ecti onVal ues, Xt OwnnSel ecti on,
Xt Di sownSel ecti on, Xt OmnSel ecti onl ncrement al
Xt Get Sel ecti onVal uel ncrenent al , Xt Get Sel ecti onVal uesl ncrenent al ,

Xt Get Sel ecti onRequest

e Xtlnstall Accel erators, Xtlnstall Al'l Accel er at or s (both destination and source)

e Xt Augnent Tr ansl ati ons, Xt OverrideTransl ations,
Xt Uni nstal | Transl ati ons, Xt Cal | Acti onProc

* Xt MapW dget , Xt UnmapW dget

e Xt Real i zeW dget, Xt Unreal i zeW dget

o Xt Set MappedWhenManaged

» Xt Cal | Accept Focus, Xt Set Keyboar dFocus (subtree)

» Xt Resi zeW ndow

e Xt Set WMCol or mapW ndows

The Widget arguments to the following procedures must be of class Composite or any subclass:
e Xt Cr eat eManagedW dget , Xt VaCr eat eManagedW dget
The Widget arguments to the following procedures must be of a subclass of Shell:

e Xt Popdown, Xt Cal | backPopdown, Xt Popup, Xt Cal | backNone,
Xt Cal | backNonexcl usi ve, Xt Cal | backExcl usi ve, Xt PopupSpri ngLoaded

The return value of the following procedure will be of class Core or a subclass:

207

Nonwidget Objects

e Xt W ndowToW dget
The return value of the following procedures will be of a subclass of Shell:

* Xt AppCreat eShel |, Xt VaAppCr eat eShel |, Xt Applnitialize,
Xt VaAppl nitialize, Xt Creat ePopupShel |, Xt VaCr eat ePopupShel |

208

Chapter 13. Evolution of the Intrinsics

The interfaces described by this specification have undergone several sets of revisions in the course
of adoption asan X Consortium standard specification. Having now been adopted by the Consortium
as a standard part of the X Window System, it is expected that this and future revisions will retain
backward compatibility in the sense that fully conforming implementations of these specifications
may be produced that provide source compatibility with widgets and applications written to previous
Consortium standard revisions.

The Intrinsics do not place any specia requirement on widget programmers to retain source or binary
compatibility for their widgets as they evolve, but several conventions have been established to assist
those devel opers who want to provide such compatibility.

In particular, widget programmers may wish to conform to the convention described in the section
called “Class Extension Records’ when defining class extension records.

Determining Specification Revision Level

Widget and application developers who wish to maintain a common source pool that will build
properly with implementations of the Intrinsics at different revision levels of these specifications
but that take advantage of newer features added in later revisions may use the symbolic macro
Xt Speci fi cati onRel ease.

#defi ne Xt SpecificationRel ease 7

As the symbol Xt Speci fi cati onRel ease was new to Release 4, widgets and applications
desiring to build against earlier implementati ons should test for the presence of this symbol and assume
only Release 3 interfaces if the definition is not present.

Release 3 to Release 4 Compatibility

At the data structure level, Release 4 retains binary compatibility with Release 3 (the
first X Consortium standard release) for all data structures except WvShel | Part,
TopLevel Shel | Part, and Tr ansi ent Shel | Part . Release 4 changed the argument type to
most procedures that now take arguments of type Xt Poi nt er and structure members that are now
of type Xt Poi nt er in order to avoid potential ANSI C conformance problems. It is expected that
most implementations will be binary compatible with the previous definition.

TwofieldsinCor e assPar t werechanged fromBool ean to Xt Enumto alow implementations
additional freedom in specifying the representations of each. This change should require no source
modification.

Additional Arguments

Arguments were added to the procedure definitions for (*XtlnitProc),
(* Xt Set Val uesFunc), and (* Xt Event Handl er) to provide more information and to alow
event handlers to abort further dispatching of the current event (caution is advised!). The added
arguments to (*XtlnitProc) and (*Xt Set Val uesFunc) make the initialize hook and
set_values_hook methods obsolete, but the hooks have been retained for those widgets that used them
in Release 3.

set_values_almost Procedures

The use of the arguments by a set_ values almost procedure was poorly described in Release 3 and
was inconsistent with other conventions.

209

Evolution of the Intrinsics

The current specification for the manner in which aset_values almost procedure returns information
to the Intrinsics is not compatible with the Release 3 specification, and all widget implementations
should verify that any set_values amost procedures conform to the current interface.

No known implementation of the Intrinsics correctly implemented the Release 3 interface, so it is
expected that the impact of this specification change is small.

Query Geometry

A composite widget layout routine that calls Xt Quer yGeonet ry is now expected to store the
complete new geometry in the intended structure; previously the specification said “ store the changes
it intends to make”. Only by storing the complete geometry does the child have any way to know
what other parts of the geometry may still be flexible. Existing widgets should not be affected by this,
except to take advantage of the new information.

unrealizeCallback Callback List

In order to provide a mechanism for widgets to be notified when they become unrealized through a
call to Xt Unr eal i zeW dget , the callback list name “unrealizeCallback” has been defined by the
Intrinsics. A widget class that requires notification on unrealize may declare a callback list resource
by this name. No classisrequired to declare this resource, but any classthat did so in aprior revision
may find it necessary to modify the resource nameif it does not wish to use the new semantics.

Subclasses of WMShell

The formal adoption of the Inter-Client Communication Conventions Manual as an X
Consortium standard has meant the addition of four fields to WMShel | Part and one field to
TopLevel Shel | Part. In deference to some widget libraries that had developed their own
additional conventions to provide binary compatibility, these five new fields were added at the end
of the respective data structures.

To provide more convenience for TransientShells, a field was added to the previously empty
Transi ent Shel | Par t . On some architectures the size of the part structure will not have changed
asaresult of this.

Any widget implementation whose class is a subclass of TopLevelShell or TransientShell must at
minimum be recompiled with the new data structure declarations. Because WVShel | Par t nolonger
contains a contiguous XSi zeHi nt s data structure, a subclass that expected to do a single structure
assignment of an XSi zeHi nt s structureto the size_hints field of WWBhel | Part must be revised,
though the old fields remain at the same positions within WWBhel | Part .

Resource Type Converters

A new interface declaration for resource type converters was defined to provide more information
to converters, to support conversion cache cleanup with resource reference counting, and to allow
additional procedures to be declared to free resources. The old interfaces remain (in the compatibility
section), and anew set of procedureswas defined that work only with the new type converter interface.

In the now obsolete old type converter interface, converters are reminded that they must return the
size of the converted value as well as its address. The example indicated this, but the description of
(* Xt Converter) wasincomplete.

KeySym Case Conversion Procedure

The specification for the (* Xt CasePr oc) function type has been changed to match the Release 3
implementation, which included necessary additional information required by the function (a pointer

210

Evolution of the Intrinsics

to the display connection), and correctsthe argument type of the source KeySym parameter. No known
implementation of the Intrinsics implemented the previously documented interface.

Nonwidget Objects

Formal support for nonwidget objects is new to Release 4. A prototype implementation was latent
in a least one Release 3 implementation of the Intrinsics, but the specification has changed
somewhat. The most significant change is the requirement for a composite widget to declare the
Conposi t ed assExt ensi on record withtheaccepts objectsfield setto Tr ue in order to permit
aclient to create a nonwidget child.

The addition of this extension field ensures that composite widgets written under Release 3 will not
encounter unexpected errorsif an application attempts to create a nonwidget child. In Release 4 there
is no requirement that all composite widgets implement the extra functionality required to manage
windowless children, so the accepts objects field allows a composite widget to declare that it is not
prepared to do so.

Release 4 to Release 5 Compatibility

At the data structure level, Release 5 retains complete binary compatibility with Release 4. The
specification of the Obj ect Part ,Rect Obj Part,Cor ePart ,Conposi t ePart,Shel | Part,
WvBhel | Part, TopLevel Shel | Part, and Appl i cati onShel | Part instance records was
made less dtrict to permit implementations to add interna fields to these structures. Any
implementation that chooses to do so would, of course, force arecompilation. The Xlib specification
for Xr nVal ue and Xr nOpt i onDescRec was updated to use anew type, XPoi nt er , for the addr
and valuefields, respectively, to avoid ANSI C conformance problems. The definition of XPoi nt er
is binary compatible with the previous implementation.

baseTranslations Resource

A new pseudo-resource, XtNbaseTrand ations, was defined to permit application devel opersto specify
trandation tables in application defaults files while still giving end users the ability to augment or
override individual event sequences. This change will affect only those applications that wish to take
advantage of the new functionality or those widgetsthat may have previously defined aresource named
“baseTrangdlations’.

Applications wishing to take advantage of the new functionality would change their application
defaultsfile, e.g., from

app. wi dget.transl ati ons: val ue
to
app. wi dget . baseTr ansl ati ons: val ue

If it is important to the application to preserve complete compatibility of the defaults file between
different versions of the application running under Release 4 and Release 5, the full trandations can
be replicated in both the “translations” and the “baseTranslations’ resource.

Resource File Search Path

The current specification allowsimplementations greater flexibility in defining the directory structure
used to hold the application class and per-user application defaults files. Previous specifications
required the substitution strings to appear in the default path in a certain order, preventing sites
from collecting al the files for a specific application together in one directory. The Release 5
specification allows the default path to specify the substitution strings in any order within a single
path entry. Userswill need to pay close attention to the documentation for the specific implementation
to know where to find these files and how to specify their own XFILESEARCHPATH and
XUSERFILESEARCHPATH values when overriding the system defaults.

211

Evolution of the Intrinsics

Customization Resource

Xt Resol vePat hnane supports a new substitution string, %C, for specifying separate application
class resource files according to arbitrary user-specified categories. The primary motivation for this
addition was separate monochrome and color application class defaults files. The substitution valueis
obtained by querying the current resource database for the application resource name* customization”,
class “Customization”. Any application that previously used this resource name and class will need
to be aware of the possibly conflicting semantics.

Per-Screen Resource Database

To alow a user to specify separate preferences for each screen of a display, a per-screen resource
specification string has been added and multiple resource databases are created; one for each screen.
Thiswill affect any application that modified the (formerly unique) resource database associated with
the display subsequent to the Intrinsics database initialization. Such applicationswill need to be aware
of the particular screen on which each shell widget isto be created.

Although the wording of the specification changed substantially in the description of the process by
which the resource database(s) is initialized, the net effect is the same as in prior releases with the
exception of the added per-screen resource specification and the new customization substitution string
in Xt Resol vePat hnane.

Internationalization of Applications

Internationalization asdefined by ANSI isatechnology that allows support of an applicationinasingle
locale. In adding support for internationalization to the Intrinsics the restrictions of this model have
been followed. In particular, the new Intrinsics interfaces are designed not to preclude an application
from using other alternatives. For thisreason, no Intrinsics routine makes a call to establish thelocale.
However, a convenience routine to establish the locale at initialize time has been provided, in the
form of a default procedure that must be explicitly installed if the application desires ANSI C locale
behavior.

As many objects in X, particularly resource databases, now inherit the global locale when they
are created, applications wishing to use the ANSI C locale model should use the new function
Xt Set LanguagePr oc to do so.

The internationalization additions also define event filters as a part of the Xlib Input
Method specifications. The Intrinsics enable the use of event filters through additions
to Xt Di spatchEvent. Applications that may not be dispatching all events through
Xt Di spat chEvent should be reviewed in the context of this new input method mechanism.

In order to permit internationalization of error messages, the name and path of the error database
file are now allowed to be implementation-dependent. No adequate standard mechanism has yet been
suggested to allow the Intrinsics to locate the database from localization information supplied by the
client.

The previous specification for the syntax of the language string specified by xnl Language has
been dropped to avoid potential conflicts with other standards. The language string syntax is now
implementation-defined. The example syntax cited is consistent with the previous specification.

Permanently Allocated Strings

In order to permit additional memory savings, an Xlib interface was added to allow the resource
manager to avoid copying certain string constants. The Intrinsics specification was updated to
explicitly requirethe Object class_name, resource_name, resource_class, resource_type, default_type
in resource tables, Core actions string field, and Constraint resource name, resource class,
resource_type, and default_type resourcefieldsto be permanently allocated. This explicit requirement
is expected to affect only applications that may create and destroy classes on the fly.

212

Evolution of the Intrinsics

Arguments to Existing Functions

The args argument to Xt Applnitialize, XtVaApplnitialize, XtOpenDi splay,
XtDisplaylnitialize, and XtInitialize were changed from Cardi nal * to int*
to conform to pre-existing convention and avoid otherwise annoying typecasting in ANSI C
environments.

Release 5 to Release 6 Compatibility

At the data structure level, Release 6 retains binary compatibility with Release 5 for all data structures
except WWBShel | Par t . Threeresourceswere added to the specification. The known implementations
had unused space in the data structure, therefore on some architectures and implementations, the size
of the part structure will not have changed as aresult of this.

Widget Internals

Two new widget methods for instance allocation and deallocation were added to the Object class.
These new methods allow widgets to be treated as C++ objects in the C++ environment when an
appropriate allocation method is specified or inherited by the widget class.

The textual descriptions of the processes of widget creation and widget destruction have been edited
to provide clarification to widget writers. Widgets writers may have reason to rely on the specific
order of the stages of widget creation and destruction; with that motivation, the specification now
more exactly describes the process.

As a convenience, an interface to locate a widget class extension record on a linked list,
Xt Get G assExt ensi on, has been added.

A new option to allow bundled changes to the managed set of a Composite widget is introduced
in the Composite class extension record. Widgets that define a change_managed procedure that can
accommodate additions and deletions to the managed set of children in asingle invocation should set
allows change managed setto Tr ue in the extension record.

The wording of the process followed by Xt UnmanageChi | dr en has changed dlightly to better
handle changes to the managed set during phase 2 destroy processing.

A new exposure event compression flag, Xt ExposeNoRegi on, was added. Many widgets specify
exposure compression, but either ignore the actual damage region passed to the core expose procedure
or use only the cumulative bounding box data available in the event. Widgets with expose procedures
that do not make use of exact exposure region information can indicate that the Intrinsics need not
compute the region.

General Application Development

Xt OpenAppl i cat i onisanew convenienceproceduretoinitializethetoolkit, create an application
context, open an X display connection, and create the root of the widget instance tree. It is identical
to the interface it replaces, Xt Appl nitial i ze, in al respects except that it takes an additional
argument specifying thewidget class of theroot shell to create. Thisinterfaceis now the recommended
one so that clients may easily become session participants. The old convenience procedures appear
in the compatibility section.

The toolkit initialization function Xt Tool ki t I ni ti al i ze may be called multiple times without
penalty.

In order to optimize changes in geometry to a set of geometry-managed children, a new interface,
Xt ChangeManagedSet , has been added.

213

Evolution of the Intrinsics

Communication with Window and Session Managers

The revision of the Inter-Client Communication Conventions Manual as an X Consortium standard
has resulted in the addition of three fields to the specification of WWShel | Par t . These are urgency,
client_leader, and window_role.

The adoption of the X Session Management Protocol as an X Consortium standard has resulted in
the addition of a new shell widget, Sessi onShel | , and an accompanying subclass verification
interface, Xt | sSessi onShel | . This widget provides support for communication between an
application and a session manager, as well as a window manager. In order to preserve compatibility
with existing subclasses of Appl i cati onShel |, the Appl i cati onShel | was subclassed to
create the new widget class. The session protocol requires amodal response to certain checkpointing
operationsby participating applications. TheSessi onShel | structurestheapplication'snotification
of and responses to messages from the session manager by use of various callback lists and by use of
the new interfaces Xt Sessi onCGet Token and Xt Sessi onRet ur nToken. Thereis also a new
command line argument, -xtsessionl D, which facilitates the session manager in restarting applications
based on the Intrinsics.

The resource name and class strings defined by the Intrinsics shell widgetsin<X11/ Shel | . h> are
now listed in Appendix E. The addition of a new symbol for the WvBhel | wait_for_wm resource
was made to bring the external symbol and the string it represents into agreement. The actual resource
name string in WWBhel | has not changed. The resource representation type of the XtNwinGravity
resource of the WWBhel | was changed to XtRGravity in order to register a type converter so that
window gravity resource values could be specified by name.

Geometry Management

A clarification to the specification was made to indicate that geometry requests may include current
values along with the requested changes.

Event Management

In Release 6, support is provided for registering selectors and event handlers for events
generated by X protocol extensions and for dispatching those events to the appropriate
widget. The new event handler registration interfaces are Xt | nser t Event TypeHandl er and
Xt RenoveEvent TypeHandl er . Since the mechanism to indicate selection of extension eventsis
specifictotheextension being used, theIntrinsicsintroduces Xt Regi st er Ext ensi onSel ect or,
which allows the application to select for the events of interest. In order to change the dispatching
algorithm to accommodate extension events as well as core X protocol events, the Intrinsics event
dispatcher may now be replaced or enveloped by the application with Xt Set Event Di spat cher.
The dispatcher may wish to call Xt Get Keyboar dFocusW dget to determine the widget with the
current Intrinsics keyboard focus. A dispatcher, after determining the destination widget, may use
Xt Di spat chEvent TOW dget to causethe event to be dispatched to the event handlers registered
by a specific widget.

To permit the dispatching of events for nonwidget drawables, such as pixmaps that are not associated
with a widget's window, Xt Regi st er Dr awabl e and Xt Unr egi st er Dr awabl e have been
added to the library. A related update was made to the description of Xt W ndowToW dget .

The library is now thread-safe, allowing one thread at a time to enter the library and
protecting global data as necessary from concurrent use. Threaded toolkit applications
are supported by the new interfaces Xt Tool kit Threadlnitialize, XtApplLock,
Xt AppUnl ock, Xt AppSet Exi t Fl ag, and Xt AppGet Exi t FI ag. Widget writers may also use
Xt ProcessLock and Xt Pr ocessUnl ock.

Safe handling of POSIX signals and other asynchronous noatifications is now provided by use of
Xt AppAddSi gnal , Xt Not i ceSi gnal , and Xt RenovesSi gnal .

214

Evolution of the Intrinsics

The application can receive notification of an impending block in the Intrinsics event manager by
registering interest through Xt AppAddBl ockHook and Xt RenoveBl ockHook.

Xt Last Event Pr ocessed returns the most recent event passed to Xt Di spat chEvent for a
specified display.

Resource Management

Resource converters are registered by the Intrinsics for window gravity and for three new resource
types associated with session participation: RestartStyle, CommandArgArray and DirectoryString.

The file search path syntax has been extended to make it easier to include the default search path,
which controls resource database construction, by using the new substitution string, %D.

Translation Management

The default key translator now recognizes the NumL ock modifier. If NumLock is on and the second
keysymisakeypad keysym (astandard keysym named witha“ KP” prefix or avendor-specific keysym
in the hexadecimal range 0x11000000 to Ox1100FFFF), then the default key trandator will use the
first keysymif Shift and/or ShiftLock ison and will use the second keysymi if neither is on. Otherwise,
it will ignore NumLock and apply the normal protocol semantics.

Selections

The targets of selection requests may be parameterized, as described by the
revised Inter-Client Communication Conventions Manual. When such requests are made,
Xt Set Sel ecti onParanet ers is used by the requestor to specify the target parameters
and Xt Cet Sel ectionParaneters is used by the selection owner to retrieve the
parameters. When a parameterized target is specified in the context of a bundled request
for multiple targets, Xt Cr eat eSel ecti onRequest, Xt Cancel Sel ecti onRequest, and
Xt SendSel ecti onRequest are used to envelop the assembly of the request. When the
parameters themselves are the names of properties, the Intrinsics provides support for the economical
use of property atom names; see Xt Reser vePr oper t yAt omand Xt Rel easePr opert yAt om

External Agent Hooks

External agent hooks were added for the benefit of applications that instrument other applications
for purposes of accessibility, testing, and customization. The external agent and the application
communicate by a shared protocol which is transparent to the application. The hook callbacks permit
the external agent to register interest in groups or classes of toolkit activity and to be notified
of the type and details of the activity as it occurs. The new interfaces related to this effort are
Xt HooksOf Di spl ay, which returns the hook registration widget, and Xt Get Di spl ays, which
returns alist of the X displays associated with an application context.

Release 6 to Release 7 Compatibility
Changes During X11R6

The Toolkit was proposed in X10R4, released at the end of 1986. The X11R6 documentation was
completed in mid-1994. Over most of the eleven years through X11R6.9, only minor changes were
made to the specification. Some changes are documented only in the release notes:

* The X11R6.3 release notes (1997) mention one new feature (section 3.15) Xt Geometry
Management Debugger, saying

Daniel Dardailler's “GeoTattler” code has been merged into the Xt Intrinsics
library implementation. This is not a standard. If libXt is compiled with the

215

Evolution of the Intrinsics

XT_GEO TATTLER symbol defined (currently there is no build configuration
support to do this) then a“geoTattler” resource may be specified for any widget
in an application. If the geoTat t | er resource for a widget instance is Tr ue
then libXt will generate debugging information to stdout when the widget makes
geometry change requests.

For example, if the resources specify:

myapp*dr aw. XnScal e. geoTattler: ON
*Xn5cr ol | Bar . geoTatt!l er: ON
* XmRowCol umrm. exi t _button. geoTattl er: ON

then geometry management debugging information will be generated for all the
Xm5cal e children of the widget named draw, al the XmScrollBars, and the
widget named exit_button in any XmRowCol urmm.

e X11R6.4 (1998) added Appendix F, Resource Configuration Management. The release notes
explain that by saying

The X Toolkit Intrinsics library (libXt) now has IBM's Easy Resource
Configuration support included.

but goes on to say (section 14) that

Easy Resource Configuration is not a standard part of the X Toolkit Intrinsics
(libXt). It is neither an X Consortium standard nor an X Project Team
specification.

e X11R6.5 (2000) documented a bug-fix for XtA ppPeekEvent in the release notes, stating that it now
worked as described in the specification. It also modified the description of XtAppPeekEvent in
the specification. Previously the specification stated that no known implementations behaved as
specified.

» Subsequent releases X11R6.6 (2001) through X11R6.9 (2005) did not document any new or
improved features.

Throughout this interval, there were undocumented fixes and improvements made to the X Toolkit
Intrinsics library. The documentation was modified to fix minor errors, improve the formatting, and
update version numbers.

Changes During X11R7

X11R7 releases starting in 2005 continued this trend, converting the documentation from nroff to
sgml. X11R7.7 (2012) providesthe same Intrinsics specification (aside from details of formatting and
version numbers) as X11R6 (1995).

The updates for this specification are a continuation of X11R7.7, because (as of April 2019) there are
no plans for an X11R7.8 release.

Converting to Standard C

The Intrinsics specification wasfirst released with X11R3in 1989. That wastoo early to take Standard
C (i.e., ANSI C) into account. Because vendors generally did not provide a no-cost Standard C
compiler, the X Toolkit Intrinsics library initially supported both K&R and ANS| C. The X11R5
release notes mention using gec, with some caveats. As aresult, the specification and implementation
gave equal attention to both K& R and ANSI C.

This example shows how afunction prototype was used in the C header files:

216

Evolution of the Intrinsics

extern Display *XtOQpenDi spl ay(

#1 f NeedFuncti onPr ot ot ypes
Xt AppCont ext /* app_context */,
_Xconst _XtString /* display_string */,
_Xconst _XtString /* application_nanme */,
_Xconst _XtString /* application_class */,
XrmOpt i onDescRec* /* options */,

Car di nal /* num.options */,
i nt* /* argc */,
char ** [* argv */

#endi f

)

The parameters for the ANSI C prototype were conditionally compiled. Used with a K&R compiler,
those parameters were ignored.

e The X Toolkit Intrinsics library used const in just a few cases. The specification did not mention
it at all.

Over time, that was seen as a problem, partly because of gcc's warning options such as write-
strings, introduced in early 1988 (released with gecc 1.27 in late 1988). Quoting from gcc 2.58's
documentation (late 1993):

-Wwite-strings'
G ve string constants the type “const char[LENGTH]' so that
copying the address of one into a non- const' “char *' pointer
will get a warning. These warnings will help you find at conpile
time code that can try to wite into a string constant, but only
if you have been very careful about using “const' in declarations
and prototypes. Oherwise, it will just be a nuisance; this is
why we did not nmake “-Vall' request these warnings.

Others did not agree that it was a nuisance. Besides the obvious advantage of improving program
correctness, making a symbol “const” gave the compiler and linker a hint that the symbol could be
put into the text (read-only) section, eliminating some steps needed by the linker to adjust addresses
and thereby reducing the time it took to load a program into memory.

Other gcc warning options (such as such as cast-qual) are useful for improving programs. They give
similar information, because unless told otherwise, gcc would treat string values as nonwritable.
Quoting from gcc 1.27:

* GNU CC normal |y makes string constants read-only. |If several
i dentical -1 ooking string constants are used, GNU CC stores only
one copy of the string.

The best solution to these problens is to change the programto
use “char'-array variables with initialization strings for these
pur poses instead of string constants. But if this is not

possi bl e, you can use the “-fwitable-strings' flag, which
directs GNU CC to handle string constants the sane way nost C
compi |l ers do.

and

“-fwitable-strings'

217

Evolution of the Intrinsics

Store string constants in the witable data segment and
don't uniquize them This is for conpatibility with old
progranms which assunme they can wite into string constants.
Witing into string constants is a very bad ides;
““constants'' shoul d be constant.

e Several prototypes in the implementation use the private type XtString. The specification and
implementation also used a String type without explaining when it is appropriate.

typedef char *String;

/[* W do this in order to get "const" declarations to work right. W
* use _XtString instead of String so that C++ applications can

* #define String to something else if they choose, to avoid conflicts
* with other C++ libraries.

*/

#define _XtString char*

That is, the developers were providing for some workaround to allow C++ applications to use the
stricter compiler checking associated with const.

» The String type is not the only type used in the prototypes for the X Toolkit Intrinsics library. Its
devel operswere also concerned with porting the library to platforms with different size-constraints.
They defined different types (used in the function prototypes) depending on whether a “wide”
parameter type was appropriate:

[* _Xt names are private to Xt inplenmentation, do not use in client code */
#i f NeedW dePr ot ot ypes

#defi ne _XtBool ean int

#def i ne _Xt D nensi on unsi gned i nt
#def i ne _Xt KeyCode unsi gned int
#define _XtPosition int

#def i ne _Xt Xt Enum unsi gned i nt
#el se

#defi ne _Xt Bool ean Bool ean

#defi ne _XtDi mensi on Di nension
#def i ne _Xt KeyCode KeyCode
#define _XtPosition Position
#define _Xt Xt Enum Xt Enum

#endi f /* NeedW dePr ot ot ypes */

and

#i f def CRAY

typedef |ong Bool ean;
typedef char* XtArgVal;
typedef |long XtEnum

#el se

typedef char Bool ean;
typedef long XtArgVal;
typedef unsi gned char Xt Enum
#endi f

In practice, wide-prototypes are rarely used, not well supported. The specification did not clarify
the distinction between Bool (mentioned as a resource type) and Boolean (used in all of the data
structures). The implementation used both, predominantly the latter.

218

Evolution of the Intrinsics

Other features of Standard C were neglected in the specification because it was accommodating K& R
C:

» K&R Chasnovoid keyword. The specification used it for return-types, but not to indicate an empty
parameter list. The specification also stated that void* would be used for the XtPointer type.

The conversion to sgml lost the void return-type.

» Standard C uses an ellipsis for variable-length argument lists, e.g., for Xt VaAppCr eat eShel | .
Again, there was a conditional-compilation symbol (NeedVar ar gsPr ot ot ypes) to handle the
different forms used. Here is an example:

#i f NeedVar ar gsPr ot ot ypes
voi d

Xt VaGet Appl i cati onResour ces(W dget wi dget, XtPointer base, XtResourceList resc

#el se
[* VARARGS4* /

voi d Xt VaGet Appl i cati onResour ces(w dget, base, resources, numresources, va_al

W dget wi dget;
Xt Poi nt er base;
Xt Resour ceLi st resources;
Cardi nal numresources;
va_dcl

#endi f

One problem with the conditional-compilation was that it was easy to make a mistake with the
order of parameters between thetwo forms. Devel operswoul d frequently group together parameters
which used the same type, whether or not they were adjacent in the Standard C prototype.

A comment in the X11R4 header file said that thiswastemporary, until function prototypes worked
everywhere. That wasfinally removed in X11R6.7 (fourteen years later). However, the subsequent
conversion to sgml lost the ellipsis from the prototypes shown in the specification.

Support for K&R C was removed from the header filesin 2003 (released in X11R6.7), and from the
library source in 2004 (released in X11R6.9). The wide-prototype featureis still present in 2019, but
generally unused.

Removing support for K& R C did not address the issues of const. That was donein 2019:
e The String is conditionally defined, to provide compatibility with existing applications.
¢ If the symbol _CONST_X_STRING is defined, String is read-only as shown here.

/*

* As used in its function interface, the String type of |ibXt can be readonl

* But conmpiling libXt with this feature may require sone internal changes,
* e.g., casts and occasionally using a plain "char*".

*/

#i f def _CONST_X STRI NG

typedef const char *String;

#el se

typedef char *String;

#endi f

» Applications which use the newer const feature must define_ CONST_X_STRING to enable this
feature.

» By default, the X Toolkit Intrinsics library uses the const feature. It has been updated to make use
of the const feature for improved type-checking.

219

Evolution of the Intrinsics

» Because the X Toolkit Intrinsics library uses const, some prototypes have been modified. For
example:

« Most of the parameters which used String are unmodified; afew (such as the argv—parameters)
are actually read/write. They are now char* parameters.

Many of the strings passed to the library are stored in widgets without reallocating a copy. Those
aretreated as read-only, and use the String type.

 Each changeto the documentation wasverified using scriptsthat extracted the function prototypes
and used the C compiler to check for compatibility.

220

Appendix A. Resource File Format

A resource file contains text representing the default resource values for an application or set of
applications.

The format of resource files is defined by Xlib — C Language X Interface. and is reproduced here
for convenience only.

The format of aresource specification is

Resourceline = Comment | IncludeFile | ResourceSpec | <empty line>
Comment =“1" { <any character except null or newline>}

IncludeFile ="“#" WhiteSpace “include” WhiteSpace FileName WhiteSpace
FileName = <valid filename for operating system>

ResourceSpec = WhiteSpace ResourceName WhiteSpace “:” WhiteSpace Value
ResourceName = [Binding] { Component Binding} ComponentName

Binding =

WhiteSpace = {<gpace> | <horizontal tab>}

Component ="“?" | ComponentName

ComponentName = NameChar { NameChar}

NameChar =g =z | AT O

Value ={ <any character except null or unescaped newline>}

Elements separated by vertical bar (|) are aternatives. Curly braces ({...}) indicate zero or more
repetitions of the enclosed elements. Square brackets ([...]) indicate that the enclosed element is
optional. Quotes (“...") are used around literal characters.

If the last character on alineis abackslash (V), that line is assumed to continue on the next line.

To alow a Vaue to begin with whitespace, the two-character sequence “\space” (backslash
followed by space) is recognized and replaced by a space character, and the two-character sequence
“\tab” (backslash followed by horizontal tab) is recognized and replaced by a horizontal tab character.

To alow a Vaue to contain embedded newline characters, the two-character sequence “\n” is
recognized and replaced by a newline character. To alow a Value to be broken across multiple lines
in atext file, the two-character sequence “\newline” (backslash followed by newline) is recognized
and removed from the value.

To alow aValueto contain arbitrary character codes, the four-character sequence “\nnn”, where each
nisadigit character intherange of “0"—* 7", isrecognized and replaced with asingle byte that contains
the octal value specified by the sequence. Finally, the two-character sequence “\\" is recognized and
replaced with a single backslash.

221

Appendix B. Translation Table Syntax

Notation

Syntax is specified in EBNF notation with the following conventions:

[a] Means either nothing or “a”

{a} Means zero or more occurrences of “a’
(alb) Meanseither “a@’ or “b”

\\n Isthe newline character

All terminals are enclosed in double quotation marks ("). Informal descriptions are enclosed in angle
brackets (< >). Syntax

The syntax of atrandation tableis

trandlationTable =[directive] { production }

directive = (“#replace” | “#override” | “#augment”) “\\n”
production =lhs“:" rhs“\\n"

lhs = (event | keyseq) { “,” (event | keyseq) }

keyseq =""" keychar { keychar} “"”

keychar =[*“~]“$" |“\\"] <ISO Latin 1 character>

event = [modifier_list] “<"event_type*>" [“(” count[“+"] “)"] { detail}
modifier_list = ([*!"]1[*:"] {modifier}) | “None”

modifier =[“~"] modifier_name

count =1 |27 |“3" "4 |..)

modifier_name ="@" <keysym> | <see ModifierNames table below>
event_type = <see Event Types table below>

detail = <event specific details>

rhs ={ name“(" [paramg] “)" }

name = namechar { namechar }

namechar ={"a-z" |"A"=Z" |*0"=9" |“_" |“-"}

params =string {“,” string}

string = quoted_string | unquoted_string

quoted string ="“"" {<Latin 1 character> | escape char} [“\""] “""
escape_char =\

unquoted_string = { <Latin 1 character except space, tab, “,”, “\\n”, “)">}

The params field is parsed into a list of St ri ng values that will be passed to the named action
procedure. A quoted string may contain an embedded quotation mark if the quotation mark is preceded
by a single backslash (\). The three-character sequence “\\"” is interpreted as “single backslash
followed by end-of-string”.

Modifier Names

The modifier field is used to specify standard X keyboard and button modifier mask bits.
Modifiersarelegal on event typesKeyPr ess, KeyRel ease,But t onPr ess,But t onRel ease,
Moti onNoti fy, EnterNotify, LeaveNot i fy, and their abbreviations. An error is generated
when atranslation table that contains modifiers for any other eventsis parsed.

222

Trandation Table Syntax

* |If themodifier list has no entries and isnot “None”, it means “don't care” on al modifiers.

* If an exclamation point (!) is specified at the beginning of the modifier list, it means that the listed
modifiers must be in the correct state and no other modifiers can be asserted.

« If any modifiers are specified and an exclamation point (!) is not specified, it means that the listed
modifiers must be in the correct state and “don't care” about any other modifiers.

« If amodifier is preceded by atilde (~), it means that that modifier must not be asserted.

 If “None’ is specified, it means no modifiers can be asserted.

» If acolon (:) is specified at the beginning of the modifier list, it directs the Intrinsics to apply any
standard modifiers in the event to map the event keycode into a KeySym. The default standard
modifiers are Shift and Lock, with the interpretation as defined in X Window System Protocol,
Section 5. The resulting KeySym must exactly match the specified KeySym, and the nonstandard
modifiers in the event must match the modifier list. For example, “:<Key>a’ is distinct from
“:<Key>A", and “:Shift<Key>A" isdistinct from “:<Key>A".

* If both an exclamation point (1) and acolon (:) are specified at the beginning of the modifier list, it
means that the listed modifiers must be in the correct state and that no other modifiers except the
standard modifiers can be asserted. Any standard modifiers in the event are applied as for colon
(:) above.

* If acolon (:) isnot specified, no standard modifiers are applied. Then, for example, “<Key>A" and
“<Key>a' are equivalent.

In key sequences, a circumflex (*) is an abbreviation for the Control modifier, adollar sign ($) isan
abbreviation for Meta, and a backslash (\) can be used to quote any character, in particular a double
quote ("), acircumflex ("), adollar sign ($), and another backslash (\). Briefly:

No nodifiers: None <event > detail
Any nodifiers: <event > detail
Only these nodifiers: I modl nod2 <event > detail

These nodifiers and any others: npdl npd2 <event> detail

The use of “None” for amodifier list isidentical to the use of an exclamation point with no modifers.

M odifier Abbreviation Meaning

Cirl c Control modifier bit
Shift S Shift modifier bit
Lock I Lock modifier bit
Meta m Meta key modifier
Hyper h Hyper key modifier
Super su Super key modifier
Alt a Alt key modifier
Mod1 Mod1 modifier bit
Mod2 Mod2 modifier bit
Mod3 Mod3 modifier bit
Mod4 Mod4 modifier bit
Mod5 Mod5 modifier bit
Buttonl Button1 modifier bit
Button2 Button2 modifier bit
Button3 Button3 modifier bit
Button4 Button4 modifier bit
Button5 Button5 modifier bit
None No modifiers

Any Any modifier combination

223

Trandation Table Syntax

A key modifier isany modifier bit one of whose corresponding K eyCodes contains the corresponding
left or right KeySym. For example, “m” or “Meta’ means any modifier bit mapping to a KeyCode
whose KeySym list contains XK_Meta L or XK_Meta R. Note that this interpretation is for each
display, not global or even for each application context. The Control, Shift, and Lock modifier names
refer explicitly to the corresponding modifier bits; there is no additional interpretation of KeySyms
for these modifiers.

Because it is possible to associate arbitrary KeySyms with modifiers, the set of key modifiers
is extensible. The “@” <keysym> syntax means any modifier bit whose corresponding KeyCode
contains the specified KeySym name.

A modifier_list/KeySym combination in a translation matches a modifiers’KeyCode combination in
an event in the following ways:

1. If acolon (:) is used, the Intrinsics call the display's (* Xt KeyPr oc) with the KeyCode and
modifiers. To match, (modifiers & ~modifiers _return) must equal modifier_list, and keysym return
must equal the given KeySym.

2. 1f (?) isnot used, the Intrinsics mask off all don't-care bits from the modifiers. This value must be
equal to modifier_list. Then, for each possible combination of don't-care modifiers in the modifier
list, thelntrinsicscall thedisplay's(* Xt KeyPr oc) withthe KeyCode and that combination ORed
with the cared-about modifier bits from the event. Keysym return must match the KeySym in the
tranglation.

Event Types

The event-type field describes XEvent types. In addition to the standard Xlib symbolic event type
names, the following event type synonyms are defined:

Type Meaning

Key KeyPr ess
KeyDown KeyPr ess
KeyUp KeyRel ease
BtnDown But t onPress
BtnUp Butt onRel ease
Motion Mot i onNoti fy
PtrMoved Mot i onNotify
MouseM oved Moti onNotify
Enter EnterNotify
EnterWindow Enter Noti fy
Leave LeaveNotify
LeaveWindow LeaveNotify
Focuslin Focusl n
FocusOut FocusCut
Keymap KeymapNot i fy
Expose Expose

GrExp G aphi csExpose
NoEXxp NoExpose
Visible VisibilityNotify
Create CreateNotify
Destroy DestroyNotify
Unmap UnmapNot i fy

224

Trandation Table Syntax

Type Meaning

Map MapNoti fy

MapReq MapRequest
Reparent Reparent Noti fy
Configure ConfigureNotify
ConfigureReq Confi gur eRequest
Grav G avityNotify
ResReq Resi zeRequest
Circ Circul ateNotify
CircReq Gi r cul at eRequest
Prop PropertyNotify
SelClr Sel ecti onCl ear
SelReg Sel ecti onRequest
Select Sel ectionNotify
Clrmap Col or mapNoti fy
Message Cl i ent Message
Mapping Mappi ngNoti fy

The supported abbreviations are:

Abbreviation Event Type Including

Ctrl KeyPr ess with Control modifier
Meta KeyPr ess with Meta modifier
Shift KeyPr ess with Shift modifier
Btn1Down Butt onPress with Buttonl detail
BtnlUp But t onRel ease with Buttonl detail
Btn2Down But t onPr ess with Button2 detail
Btn2Up Butt onRel ease with Button2 detail
Btn3Down But t onPr ess with Button3 detail
Btn3Up But t onRel ease with Button3 detail
Btn4Down Butt onPress with Button4 detail
Btn4Up But t onRel ease with Button4 detail
Btn5Down But t onPr ess with Button5 detail
Btn5Up But t onRel ease with Button5 detail
BtnMotion Mot i onNoti fy with any button modifier
Btn1Motion Mot i onNotify with Buttonl modifier
Btn2Motion Moti onNot i fy with Button2 modifier
Btn3Motion Mot i onNoti fy with Button3 modifier
Btn4Motion Mot i onNot i fy with Button4 modifier
Btn5Motion Moti onNot i fy with Button5 modifier

The detail field is event-specific and normally corresponds to the detail field of the corresponding
event as described by X Window System Protocol, Section 11. The detail field is supported for the

following event types:

KeyPress

KeySym from event detail (keycode)

225

Trandation Table Syntax

KeyRelease KeySym from event detail (keycode)
ButtonPress button from event detail
ButtonRelease button from event detail
MotionNotify event detail

EnterNotify event mode
LeaveNotify event mode

Focusin event mode

FocusOut event mode
PropertyNotify atom

SelectionClear selection
SelectionRequest selection
SelectionNotify selection
ClientMessage type

MappingNotify request

If theevent typeisKeyPr ess or KeyRel ease, thedetail field specifiesaKeySym namein standard
format which is matched against the event as described above, for example, <Key>A.

For the PropertyNoti fy, Sel ecti onC ear, Sel ecti onRequest, Sel ecti onNoti fy,
and Cli ent Message events the detail field is specified as an atom name; for example,
<Message>WM_PROTOCOLS. For the MotionNotify, EnterNotify, LeaveNotify,
Focusl n, FocusQut , and Mappi ngNot i f y events, either the symbolic constants as defined by
X Window System Protocol, Section 11, or the numeric values may be specified.

If no detail field is specified, then any value in the event detail is accepted as a match.

A KeySym can be specified as any of the standard KeySym names, a hexadecimal number prefixed
with “0x” or “0X”, an octal number prefixed with “0”, or a decimal number. A KeySym expressed
asasingledigit isinterpreted as the corresponding Latin 1 KeySym, for example, “0” isthe KeySym
XK _0. Other single character KeySymsaretreated asliteral constantsfrom Latin 1, for example, “!” is
treated as 0x21. Standard KeySym names are as defined in <X11/ keysyndef . h> with the“XK_”
prefix removed.

Canonical Representation

Every trandlation table has a unique, canonical text representation. This representation is passed to a
widget'sdi spl ay_accel er at or procedure to describe the accelerators installed on that widget.
The canonical representation of atranglation tableis (see also “ Syntax”)

tranglationTable = { production }

production =lhs“:" rhs“\\n"

lhs =event{ “,” event}

event =[modifier_list] “<"event_type">" [“(" count[“+"] “)"] {detail}
modifier_list =[*!1"][*:"] {modifier}

modifier =[“~"] modifier_name

count =(“1m)27 |43 |47 ..

modifier_name ="“@" <keysym> | <see canonical modifier names below>
event_type = <see canonical event types below>

detail =<event-specific details>

rhs ={ name*“(" [params] “)" }

name =namechar { namechar }

226

Trandation Table Syntax

namechar ={ @ A0 | |)
params =gtring {“,” string}

string =quoted_string

quoted string ="“"" {<Latin 1 character> | escape_char} [“\""] “"”
escape_char =\

The canonical modifier names are

Crl Mod1 Buttonl
Shi ft Mod2 Butt on2
Lock Mod3 But t on3
Mod4 Butt on4
Mod5 But t on5

The canonical event types are

KeyPress KeyRelease
ButtonPress ButtonRelease
MotionNotify EnterNotify
LeaveNotify Focusin
FocusOut KeymapNotify
Expose GraphicsExpose,
NoExpose VisihilityNotify
CreateNotify DestroyNotify
UnmapNotify MapNotify
MapRequest ReparentNotify
ConfigureNotify ConfigureRequest
GravityNotify ResizeRequest
CirculateNotify CirculateRequest
PropertyNotify SelectionClear
SelectionRequest SelectionNotify
ColormapNotify ClientMessage
Examples

» Always put more specific events in the table before more general ones:

Shift <BtnlDown> : twas()\n\
<Bt n1Down> : brillig()
* For double-click on Buttonl Up with Shift, use this specification:

Shi ft<BtnlUp>(2) : and()
» Thisisequivaent to the following line with appropriate timers set between events:

Shi f t <Bt n1Down>, Shi ft <Bt n1Up>, Shi f t <Bt n1Down>, Shi ft <Bt n1Up> : and()
* For double-click on Button1 Down with Shift, use this specification:

Shi ft <Bt n1Down>(2) : the()

227

Trandation Table Syntax

» Thisisequivaent to the following line with appropriate timers set between events:

Shi ft <Bt n1Down>, Shi ft <Bt n1Up>, Shi ft <Bt n1Down> : t he()
» Mouse motion is aways discarded when it occurs between eventsin a table where no motion event
is specified:

<Bt n1Down>, <Bt n1Up> : slithy()

Thisistaken, evenif the pointer movesabit between the down and up events. Similarly, any motion
event specified in a trandation matches any number of motion events. If the motion event causes
an action procedure to be invoked, the procedure is invoked after each motion event.

« If an event sequence consists of a sequence of eventsthat isalso anoninitial subsequence of another
trangdlation, it is not taken if it occurs in the context of the longer sequence. This occurs mostly in
sequences like the following:

<Bt n1Down>, <Bt n1Up> : toves()\n\
<BtnlUp> : did()

The second trandation is taken only if the button release is not preceded by a button press or if
there are intervening events between the press and the release. Be particularly aware of this when
using the repeat notation, above, with buttons and keys, because their expansion includes additional
events; and when specifying motion events, because they are implicitly included between any two
other events. In particular, pointer motion and double-click translations cannot coexist in the same
translation table.

» For single click on Button1 Up with Shift and Meta, use this specification:

Shift Meta <BtnlDown>, Shift Meta<BtnlUp>: gyre()

» For multiple clicks greater or equal to a minimum number, a plus sign (+) may be appended to the
final (rightmost) count in an event sequence. The actionswill be invoked on the count-th click and
each subsequent one arriving within the multi-click time interval. For example:

Shift <BtnlUp>(2+) : and()
e Toindicate Ent er Not i fy with any modifiers, use this specification:

<Enter> : ginble()
» Toindicate Ent er Not i f y with no modifiers, use this specification:

None <Enter> : in()
» Toindicate Ent er Not i f y with Button1 Down and Button2 Up and “don't care” about the other
modifiers, use this specification:

Buttonl ~Button2 <Enter> : the()

e To indicate Ent er Noti fy with Buttonl down and Button2 down exclusively, use this
specification:
! Buttonl Button2 <Enter> : wabe()

Y ou do not need to use atilde (~) with an exclamation point (!).

228

f\ppendix C. Compatibility Functions

In prototype versions of the X Toolkit each widget class implemented an Xt<Widget>Create (for
example, Xt Label Cr eat e) function, in which most of the code wasidentical from widget towidget.
In the Intrinsics, asingle generic Xt Cr eat eW dget performs most of the common work and then
callstheinitialize procedure implemented for the particular widget class.

Each Composite class also implemented the procedures Xt<Widget>Add and an Xt<Widget>Delete
(for example, Xt But t onBoxAddBut t on and Xt But t onBoxDel et eBut t on). Inthelntrinsics,
the Composite generic procedures Xt ManageChi | dr en and Xt UnmanageChi | dr en perform
error checking and screening out of certain children. Then they call the change_managed procedure
implemented for the widget's Composite class. If the widget's parent has not yet been realized, the call
to the change_managed procedure is delayed until realization time.

Old-style calls can be implemented in the X Toolkit by defining one-line procedures or macros that
invoke a generic routine. For example, you could define the macro Xt Label Cr eat e as:

#def i ne Xt Label Creat e(nane, parent, args, numargs) \
((Label Wdget) Xt CreateW dget (nanme, |abel WdgetC ass, parent, args, numargs

Pop-up shells in some of the prototypes automatically performed an Xt ManageChi | d on their
child within their insert_child procedure. Creators of pop-up children need to call Xt ManageChi | d
themselves.

Xt Appl nitializeandXt VaAppl niti alize havebeenreplacedby Xt OpenAppl i cati on
and Xt VaOpenAppl i cati on.

To initialize the Intrinsics internals, create an application context, open and initialize a display,
and create the initial application shell instance, an application may use Xt Appl nitialize or
Xt VaAppl nitialize.

W dget Xt Appl nitialize(app_context _return, application_cl ass,
options, numoptions, argc_in_out, argv_in_out, fallback_resources,
args, num. args);

app_context_return Returns the application context, if non-
NULL.

application_class Specifies the class name of the
application.

options Specifiesthe command line optionstable.

num_options Specifies the number of entries in
options.

argc_in_out Specifies a pointer to the number of

command line arguments.

argv_in_out Specifies a pointer to the command line
arguments.
fallback resources Specifiesresourcevaluesto beused if the

application class resource file cannot be
opened or read, or NULL.

! This appendix is part of the formal Intrinsics Specification.

229

Compatibility Functions

args Specifies the argument list to override
any other resource specifications for the
created shell widget.

num_args Specifies the number of entries in the
argument list.

The XtApplnitialize function <cals XtToolkitlnitialize followed by
Xt Cr eat eAppl i cati onCont ext ,thencalls Xt OpenDi spl ay withdisplay_string NULL and
application_name NULL, and finally calls Xt AppCr eat eShel | with application_name NULL,
widget_class appl i cati onShel | W dget O ass, and the specified args and num_args and
returns the created shell. The modified argc and argv returned by Xt Di spl aylnitialize
are returned in argc_in_out and argv_in_out. If app context_return is not NULL, the created
application context is also returned. If the display specified by the command line cannot be
opened, an error message is issued and Xt Applnitialize terminates the application. If
fallback resourcesisnon-NULL, Xt AppSet Fal | backResour ces iscalled with the value prior
to calling Xt OQpenDi spl ay.

W dget Xt VaApplnitialize(app_context _return, application_class,
options, num opt i ons, argc_i n_out, argv_in_out,
fal |l back_resources,);

app_context_return Returns the application context, if non-
NULL.

application_class Specifies the class name of the
application.

options Specifiesthe command line optionstable.

num_options Specifies the number of entries in
options.

argc_in_out Specifies a pointer to the number of

command line arguments.

argv_in_out Specifies the command line arguments
array.
fallback_resources Specifiesresourcevaluesto beused if the

application class resource file cannot be
opened, or NULL.

Specifies the variable argument list
to override any other resource
specifications for the created shell.

The Xt VaAppl ni ti al i ze procedure is identical in function to Xt Appl ni ti al i ze with the
args and num_args parameters replaced by avarargslist, as described in Section 2.5.1.

As a convenience to people converting from earlier versions of the toolkit without
application contexts, the following routines exist: Xtlnitialize, XtMinLoop,
Xt Next Event, XtProcessEvent, XtPeekEvent, XtPending, XtAddlnput,
Xt AddTi neQut, Xt AddWer kProc, Xt CreateApplicationShell, XtAddActions,
Xt Set Sel ecti onTi nmeout , and Xt Get Sel ecti onTi neout.

W dget Xtlnitialize(shell nane, application_cl ass, options,
num options, argc, argv);

shell_name This parameter isignored; therefore, you
can specify NULL.

230

Compatibility Functions

application_class Specifies the class name of this
application.
options Specifies how to parse the command line

for any application-specific resources.
The options argument is passed as a
parameter to Xr nPar seConmrand.

num_options Specifies the number of entries in the
options list.
argc Specifies a pointer to the number of

command line parameters.
argv Specifies the command line parameters.

Xtlnitialize cals Xt Tool kitlnitialize to initidlize the toolkit internals, creates a
default application context for use by the other convenience routines, calls Xt OpenDi spl ay with
display string NULL and application_name NULL, and finally calls Xt AppCr eat eShel | with
application_name NULL and returns the created shell. The semantics of calling Xt I ni ti ali ze
more than once are undefined. This routine has been replaced by Xt OpenAppl i cati on.

voi d Xt Mai nLoop(void);

Xt Mai nLoop first readsthe next alternateinput, timer, or X event by calling Xt Next Event . Thenit
dispatches this to the appropriate registered procedure by calling Xt Di spat chEvent . Thisroutine
has been replaced by Xt AppMai nLoop.

voi d Xt Next Event (event return);

event_return Returns the event information to the
specified event structure.

If no input is on the X input queue for the default application context, Xt Next Event flushes the
X output buffer and waits for an event while looking at the alternate input sources and timeout
values and calling any callback procedures triggered by them. This routine has been replaced by
Xt AppNext Event . Xt I ni ti al i ze must be called before using this routine.

voi d Xt ProcessEvent (mask);
mask Specifies the type of input to process.

Xt ProcessEvent processesone X event, timeout, or alternateinput source (depending onthevalue
of mask), blocking if necessary. It has been replaced by Xt AppPr ocessEvent . Xt nitiali ze
must be called before using this function.

Bool ean Xt PeekEvent (event _return);

event_return Returns the event information to the
specified event structure.

If thereis an event in the queue for the default application context, Xt PeekEvent fillsin the event
and returns anonzero value. If no X input is on the queue, Xt PeekEvent flushes the output buffer
and blocks until input is available, possibly calling some timeout callbacks in the process. If the input
is an event, Xt PeekEvent fillsin the event and returns a nonzero value. Otherwise, the input is
for an alternate input source, and Xt PeekEvent returns zero. This routine has been replaced by
Xt AppPeekEvent . Xt I ni ti al i ze must be called before using this routine.

Bool ean Xt Pendi ng(voi d);

Xt Pendi ng returns anonzero value if there are events pending from the X server or alternate input
sources in the default application context. If there are no events pending, it flushes the output buffer

231

Compatibility Functions

and returns a zero value. It has been replaced by Xt AppPendi ng. Xt I ni ti al i ze must be called
before using this routine.

Xt | nput I d Xt Addl nput (source, condition, proc, client_data);

source Specifies the source file descriptor on a
POSIX-based system or other operating-
system-dependent device specification.

condition Specifies the mask that indicates either a
read, write, or exception condition or some
operating-system-dependent condition.

proc Specifiesthe procedure called wheninput is
available.
client_data Specifiesthe parameter to be passed to proc

when input is available.

The Xt AddI nput function registersin the default application context a new source of events, which
isusualy file input but can also be file output. (The word file should be loosely interpreted to mean
any sink or source of data)) Xt Addl nput also specifies the conditions under which the source can
generate events. When input is pending on this source in the default application context, the callback
procedureis called. Thisroutine has been replaced by Xt AppAddl nput . Xt I ni ti al i ze must be
called before using this routine.

Xtlnterval ld XtAddTi meQut (i nterval, proc, client_data);

interval Specifies the time interval in milliseconds.

proc Specifies the procedure to be called when
time expires.

client_data Specifiesthe parameter to be passed to proc
when it is called.

The Xt AddTi meQut function creates a timeout in the default application context and returns an
identifier for it. The timeout value is set to interval. The callback procedure will be called after
the time interval elapses, after which the timeout is removed. This routine has been replaced by
Xt AppAddTi nmeQut . Xt I ni ti al i ze must be called before using this routine.

Xt Wor kProcl d Xt AddWer kProc(proc, client_data);

proc Procedure to call to do the work.

client_data Client datato passto proc whenit is called.

This routine registers a work procedure in the default application context. It has been replaced by
Xt AppAddWor kProc. Xt I ni ti al i ze must be called before using this routine.

W dget Xt CreateApplicationShell (name, w dget_cl ass, args, num args);

name This parameter isignored; therefore, you
can specify NULL.
widget_class Specifies the widget class pointer

for the created application shell
widget. This will usualy be
t opLevel Shel | Wdget C ass or a
subclass thereof.

232

Compatibility Functions

args Specifies the argument list to override
any other resource specifications.

num args Specifies the number of entriesin args.

The procedure Xt Creat eApplicati onShel | cals Xt AppCreateShel |l with
application_name NULL, the application class passed to Xtlnitialize, and the default
application context created by Xtlnitialize. This routine has been replaced by
Xt AppCr eat eShel | .

An old-format resource type converter procedure pointer is of type (* Xt Converter).
typedef void (*XtConverter)(args, numargs, from to);

args Specifiesalist of additional Xr nVal ue arguments
to the converter if additional context is needed to
perform the conversion, or NULL.

num_args Specifies the number of entriesin args.

from Specifies the value to convert.

to Specifies the descriptor to use to return the
converted value.

Type converters should perform the following actions;

» Check to seethat the number of arguments passed is correct.

 Attempt the type conversion.

e If successful, return the size and pointer to the data in the to argument; otherwise, call
Xt Vr ni ngMs g and return without modifying the to argument.

Most type converters just take the data described by the specified from argument and return data by
writing into the specified to argument. A few need other information, whichisavailablein the specified
argument list. A type converter can invoke another type converter, which allows differing sources that
may convert into acommon intermediate result to make maximum use of the type converter cache.

Note that the address returned in to->addr cannot be that of alocal variable of the converter because
thisis not valid after the converter returns. It should be a pointer to a static variable.

The procedure type (* Xt Convert er) hasbeenreplaced by (* Xt TypeConverter).

The Xt St ri ngConver si onWar ni ng function is a convenience routine for old-format resource
converters that convert from strings.

voi d Xt StringConversi onWarni ng(src, dst_type);
src Specifies the string that could not be converted.

dst_type Specifies the name of the type to which the string
could not be converted.

The Xt StringConversi onWarni ng function issues a warning message with name
“conversionError”, type “string”, class “XtToolkitError’, and the default message string
“Cannot convert "src" to type dst type’. This routine has been superseded by
Xt Di spl aySt ri ngConver si onV\ar ni ng.

To register an old-format converter, use Xt AddConvert er or Xt AppAddConverter.

void XtAddConverter(fromtype, to_type, converter, convert_args,
num ar gs) ;

233

Compatibility Functions

from _type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the type converter procedure.
convert_args Specifies how to compute the additional

arguments to the converter, or NULL.

num_args Specifies the number of entries in
convert_args.

Xt AddConvert er isequivaentinfunctionto Xt Set TypeConvert er with cache typeequal to
Xt CacheAl | for old-format type converters. It has been superseded by Xt Set TypeConvert er.

voi d Xt AppAddConverter(app_context, fromtype, to_type, converter,
convert _args, num.args);

app_context Specifies the application context.
from_type Specifies the source type.

to_type Specifies the destination type.

converter Specifies the type converter procedure.
convert_args Specifies how to compute the additional

arguments to the converter, or NULL.

num args Specifies the number of entries in
convert_args.

Xt AppAddConverter is equivaent in function to Xt AppSet TypeConverter with
cache type equal to Xt CacheAl | for old-format type converters. It has been superseded by
Xt AppSet TypeConverter.

To invoke resource conversions, a client may use Xt Convert or, for old-format converters only,
Xt Di rect Convert.

void Xt Convert(w, fromtype, from to_type, to return);

w Specifies the widget to use for additional
arguments, if any are needed.

from_type Specifies the source type.

from Specifies the value to be converted.

to_type Specifies the destination type.

to_return Returns the converted value.

voi d XtDirectConvert(converter, args, numargs, from to _return);
converter Specifies the conversion procedure to be called.

args Specifies the argument list that contains the
additional arguments needed to perform the
conversion (often NULL).

num_args Specifies the number of entriesin args.

from Specifies the value to be converted.

234

Compatibility Functions

to_return Returns the converted value.

The Xt Convert function looks up the type converter registered to convert from type to
to_type, computes any additional arguments needed, and then cals Xt Di r ect Convert or
Xt Cal | Converter.TheXt Di rect Convert functionlooksin the converter cacheto seeif this
conversion procedure has been called with the specified arguments. If so, it returns a descriptor for
information stored in the cache; otherwise, it calls the converter and enters the result in the cache.

Before calling the specified converter, Xt Di r ect Convert setsthereturn value sizeto zero and the
return value addressto NULL. To determineif the conversion was successful, the client should check
to_return.addr for non-NULL. The datareturned by Xt Conver t must be copied immediately by the
caler, asit may point to static datain the type converter.

Xt Convert has been replaced by Xt Convert AndSt or e, and Xt Di r ect Convert has been
superseded by Xt Cal | Converter.

To desallocate a shared GC when it is no longer needed, use Xt Dest r oy GC.
voi d Xt DestroyGC(w, gc);

w Specifies any object on the display for which the shared GC was
created. Must be of class Object or any subclass thereof.

gc Specifies the shared GC to be deall ocated.

Referencesto sharable GCs are counted and afree request is generated to the server when the last user
of agiven GC destroysit. Note that some earlier versions of Xt Dest r oy GC had only agc argument.
Therefore, this function is not very portable, and you are encouraged to use Xt Rel easeGC instead.

Todeclarean action tablein the default application context and register it with the transl ation manager,
use Xt AddAct i ons.

voi d Xt AddActions(actions, num actions);
actions Specifies the action table to register.
num_actions Specifies the number of entriesin actions.

If more than one action is registered with the same name, the most recently registered action is used.
If duplicate actions exist in an action table, the first is used. The Intrinsics register an action table
for Xt MenuPopup and Xt MenuPopdown as part of X Toolkit initialization. This routine has been
replaced by Xt AppAddActions. Xt | nitial i ze must be called before using this routine.

To set the Intrinsics selection timeout in the default application context, use
Xt Set Sel ecti onTi neout .

voi d Xt Set Sel ecti onTi neout (ti neout);

timeout Specifies the selection timeout in
milliseconds. This routine has been
replaced by Xt AppSet Sel ecti onTi nmeout .
Xtlnitialize must be caled before using this
routine.

To get the current selection timeout value in the default application context, use
Xt Get Sel ecti onTi neout .

unsi gned | ong Xt Get Sel ecti onTi meout (voi d) ;

The selection timeout is the time within which the two communicating applications must respond to
one another. If one of them does not respond within this interval, the Intrinsics abort the selection
request.

235

Compatibility Functions

This routine has been replaced by Xt AppGet Sel ectionTi nmeout. Xtlnitialize must be
called before using this routine.

To obtain the global error database (for example, to merge with an application- or widget-specific
database), use Xt Get Er r or Dat abase.

Xr nDat abase * Xt Get Err or Dat abase(voi d);

The Xt Get Er r or Dat abase function returns the address of the error database. The Intrinsics do
a lazy binding of the error database and do not merge in the database file until the first call to
Xt Get Er r or Dat abaseText . Thisroutine has been replaced by Xt AppGet Er r or Dat abase.

An error message handler can obtain the error database text for an error or a warning by calling
Xt Get Er r or Dat abaseText .

voi d Xt Get Err or Dat abaseText (nane, type, cl ass, defaul t,
buffer_return, nbytes);

name

type Specify the name and type that are
concatenated to form the resource name
of the error message.

class Specifies the resource class of the error
message.

default Specifies the default message to useif an
error database entry is not found.

buffer_return Specifies the buffer into which the error
message is to be returned.

nbytes Specifiesthe size of the buffer in bytes.

The Xt Get Err or Dat abaseText returns the appropriate message from the error database
associated with the default application context or returns the specified default message if one is not
found in the error database. To form the full resource name and class when querying the database,
the name and type are concatenated with a single “.” between them and the class is concatenated
with itself with asingle “.” if it does not already contain a“.”. This routine has been superseded by
Xt AppCet Er r or Dat abaseText .

To register a procedure to be called on fatal error conditions, use Xt Set Er r or MsgHandl er .
voi d Xt Set Err or MsgHandl er (msg_handl er) ;

msg_handler Specifies the new fatal error procedure,
which should not return.

The default error handler provided by the Intrinsics constructs astring from the error resource database
and calls Xt Er r or . Fatal error message handlers should not return. If one does, subsequent Intrinsics
behavior is undefined. This routine has been superseded by Xt AppSet Er r or MsgHandl er .

To call the high-level error handler, use Xt Er r or Msg.

void XtErrorMg(nane, type, class, default, paranms, num parans);

name Specifies the general kind of error.
type Specifies the detailed name of the error.
class Specifies the resource class.

236

Compatibility Functions

default Specifiesthe default messageto useif an error
database entry is not found.

params Specifies a pointer to a list of values to be
stored in the message.

num_params Specifies the number of entriesin params.
This routine has been superseded by Xt AppEr r or Msg.

Toregister aprocedureto be called on nonfatal error conditions, use Xt Set War ni ngMsgHandl er .
voi d Xt Set War ni ngMsgHandlI er (nmsg_handl er) ;

msg_handler Specifies the new nonfatal error procedure,
which usually returns.

The default warning handler provided by the Intrinsics constructs a string from the
error resource database and cals Xt WArning. This routine has been superseded by
Xt AppSet War ni ngMsgHandl er .

To call theinstalled high-level warning handler, use Xt WWar ni ngMsg.

voi d Xt War ni ngMsg(nane, type, class, default, parans, num parans);

name Specifies the general kind of error.

type Specifies the detailed name of the error.

class Specifies the resource class.

default Specifiesthe default messageto useif an error

database entry is not found.

params Specifies a pointer to a list of values to be
stored in the message.

num_params Specifies the number of entriesin params.
This routine has been superseded by Xt AppWar ni nghsg.

To register a procedure to be called on fatal error conditions, use Xt Set Er r or Handl er .

voi d Xt Set Er r or Handl er (handl er);

handler Specifies the new fatal error procedure, which should
not return.

The default error handler provided by the Intrinsicsis_ Xt Er r or . On POSI X-based systems, it prints
the message to standard error and terminates the application. Fatal error message handlers should not
return. If one does, subsequent X Toolkit behavior isundefined. This routine has been superseded by
Xt AppSet Er r or Handl er .

To call theinstalled fatal error procedure, use Xt Er r or .
void XtError(nmessage);
message Specifies the message to be reported.

Most programs should use Xt AppEr r or Msg, not Xt Er r or, to provide for customization and
internationalization of error messages. This routine has been superseded by Xt AppEr r or .

To register a procedure to be called on nonfatal error conditions, use Xt Set War ni ngHandl er .

237

Compatibility Functions

voi d Xt Set War ni ngHandl er (handl er) ;

handler Specifies the new nonfatal error procedure, which
usualy returns.

The default warning handler provided by the Intrinsicsis _ Xt War ni ng. On POSIX-based systems,
it prints the message to standard error and returns to the caller. This routine has been superseded by
Xt AppSet War ni ngHandl er .

To call theinstalled nonfatal error procedure, use Xt \\ar ni ng.
voi d Xt War ni ng(message) ;
message Specifies the nonfatal error message to be reported.

Most programs should use Xt AppWar ni ngMsg, not Xt \War ni ng, to providefor customization and
internationalization of warning messages. This routine has been superseded by Xt AppWar ni ng.

238

Appendix D. Intrinsics Error
Messages

All Intrinsics errors and warnings have class “ XtToolkitError”. The following two tables summarize
the common errors and warnings that can be generated by the Intrinsics. Additional implementation-

dependent messages are permitted. Error Messages

Name Type Default M essage
alocError calloc Cannot perform calloc
allocError malloc Cannot perform malloc
alocError realloc Cannot perform realloc
internal Error xtM akeGeometryReguest internal error;
ShellClassExtension isNULL
invalidArgCount xtGetValues Argument count > 0 on NULL
argument list in XtGetValues
invalidArgCount XtSetVaues Argument count > 0 on NULL

argument list in XtSetValues

invalidClass applicationShelllnsertChild ApplicationShell does not
accept RectObj children;
ignored

invalidClass constraintSetValue Subclass of Constraint required
in CallConstraintSetValues

invalidClass xtAppCreateShell XtAppCreateShell requires non-
NULL widget class

invalidClass xtCreatePopupShell XtCreatePopupShell requires
non-NULL widget class

invalidClass xtCreateWidget XtCreateWidget requires non-
NULL widget class

invalidClass xtPopdown XtPopdown requires a subclass
of shellWidgetClass

invalidClass xtPopup XtPopup requires a subclass of
shellWidgetClass

invalidDimension xtCreateWindow Widget %s has zero width and/
or height

invalidDimension shellRedlize Shell widget %s has zero width
and/or height

invalidDisplay xtlnitialize Can't open display: %s

invalidGetValues xtGetValues NULL ArgVal in XtGetValues

invalidExtension

shellClassPartInitialize

widget class %s hasinvalid
ShellClassExtension record

invalidExtension xtM akeGeometryReguest widget class %s hasinvalid
ShellClassExtension record

invalidGeometryM anager xtM akeGeometryRequest XtMakeGeometryRequest
- parent has no geometry
manager

invalidParameter xtAddlnput invalid condition passed to

XtAddlnput

239

Intrinsics Error Messages

Name Type Default M essage

invalidParameter xtAddlnput invalid condition passed to
XtAppAddinput

invalidParent xtChangeM anagedSet Attempt to manage a child when
parent is not Composite

invalidParent xtChangeM anagedSet Attempt to unmanage a child
when parent is not Composite

invalidParent xtCreatePopupShell XtCreatePopupShell requires
non-NULL parent

invalidParent xtCreateWidget XtCreateWidget requires non-
NULL parent

invalidParent xtM akeGeometryReguest non-shell has no parent in
XtMakeGeometryRequest

invalidParent xtM akeGeometryRequest XtMakeGeometryRequest -
parent not composite

invalidParent xtManageChildren Attempt to manage a child when
parent is not Composite

invalidParent xtUnmanageChildren Attempt to unmanage a child

invalidProcedure
invalidProcedure

invalidWindow
missingWidget

nonWidget

noPerDisplay
noPerDisplay

noSel ectionProperties
noWidgetAncestor
nullDisplay

nullProc
r2versionMismatch
R3versionMismatch

R4orR5versionMismatch

inheritanceProc
realizeProc

eventHandler
fetchDisplayArg

xtCreateWidget

closeDisplay

getPerDisplay

freeSel ectionProperty
windowedAncestor
xtRegisterExtensionSel ector
insertChild

widget

widget

widget

when parent is not Composite
Unresolved inheritance
operation

No realize class procedure
defined

Event with wrong window

FetchDisplayArg called without
awidget to reference

attempt to add non-widget child
"00s" to parent "%s" which
supports only widgets

Couldn't find per display
information

Couldn't find per display
information

internal error: no selection
property context for display

Object "%s" does not have
windowed ancestor

XtRegisterExtensionSel ector
requiresanon-NULL display

"%0s" parent has NULL
insert_child method

Widget class %s must be re-
compiled.
Widget class %s must be re-
compiled.

Widget class %s must be re-
compiled.

240

Intrinsics Error Messages

Name Type Default M essage

rangeError xtRegisterExtensionSel ector Attempt to register multiple
selectors for one extension
event type

sessionM anagement SmcOpenConnection Tried to connect to session

manager, %s

subclassMismatch xtCheckSubclass Widget class %s found when
subclass of %s expected: %s

War ning M essages

Name Type Default M essage

ambiguousParent xtChangeM anagedSet Not al children have same
parent

ambiguousParent xtManageChildren Not all children have same
parent in XtManageChildren

ambiguousParent xtUnmanageChildren Not al children have same
parent in XtUnmanageChildren

badFormat xtGetSelectionVaue Selection owner returned type
INCR property with format !=
32

badGeometry shellRedlize Shell widget "%s" has an
invalid geometry specification:
ll%gl

badValue cvtStringToPixel Color name "%s" is not defined

communicationError select Select failed; error code %s

conversionError string Cannot convert string "%s" to
type %s

conversionError stringToVisual Cannot find Visual of class %s

conversionFailed
conversionFailed

displayError
grabError

grabError

initializationError
insufficientSpace

interna Error

invalidAddressMode

invalidArgCount

invalidCallbackList

xtConvertVarToArgList
xtGetTypedArg

invalidDisplay
XtAddGrab

xtRemoveGrab

xtinitialize
xtGetTypedArg

shell

computeArgs

getResources

xtAddCallback

for display %s
Type conversion failed

Type conversion (%s to %s)
failed for widget '%s
Can't find display structure

XtAddGrab requires exclusive
grab if spring_loaded is TRUE

XtRemoveGrab asked to
remove awidget not on the list

Initializing Resource Lists twice
Insufficient space for converted
type '%s' in widget '%s

Shell's window manager
interaction is broken

Conversion arguments
for widget '%s contain an
unsupported address mode

argument count > 0 on NULL
argument list

Cannot find callback list in
XtAddCallback

241

Intrinsics Error Messages

Name Type Default M essage

invalidCallbackList xtAddCallback Cannot find callback list in
XtAddCallbacks

invalidCallbackList xtCallCallback Cannot find callback list in

invalidCallbackList
invalidCallbackList
invalidChild
invalidChild
invalidChild
invalidChild
invalidChild

invalidDepth
invalidExtension

invalidExtension

invalidGrab
invalidGrabKind
invalidParameters
invalidParameters
invalidParameters
invalidParameters
invalidParent
invalidPopup
invalidPopup

invalidPopup

xtRemoveAllCallback
xtRemoveCallback
xtChangeM anagedSet
xtManageChildren
xtManageChildren
xtUnmanageChildren
xtUnmanageChildren

setVaues
xtCreateWidget

xtCreateWidget

ungrabK eyOrButton
XtPopup
freeTranglations
mergeTrandations
xtMenuPopdown
xtMenuPopupAction
xtCopyFromParent
xtMenuPopup
xtMenuPopdown

unsupportedOperation

XtCallCallbacks

Cannot find callback list in
XtRemoveAllCallbacks

Cannot find callback list in
XtRemoveCallbacks

Null child passed to
UnmanageChildren

null child passed to
ManageChildren

null child passed to
XtManageChildren

Null child passed to
XtUnmanageChildren

Null child found in argument
list to unmanage

Can't change widget depth
widget "%s" class
%s hasinvaid

CompositeClassExtension
record

widget class %s has invalid
ConstraintClassExtension
record

Attempt to remove nonexistent
passive grab

grab kind argument hasinvalid
value; XtGrabNone assumed
Freeing XtTranslations requires
no extra arguments

MergeTM to TrandlationTable
needs no extra arguments

XtMenuPopdown called with
num_params!=0or 1

MenuPopup wants exactly one
argument

CopyFromParent must have
non-NULL parent

Can't find popup widget "%s" in
XtMenuPopup

Can't find popup in widget "%s"
in XtMenuPopdown

Pop-up menu creation is only

supported on ButtonPress,
KeyPress or EnterNotify events.

242

Intrinsics Error Messages

Name Type Default M essage
invalidPopup unsupportedOperation Pop-up menu creation is only
supported on Button, Key or
EnterNotify events.
invalidProcedure deleteChild null delete_child procedure for
class %sin XtDestroy
invalidProcedure inputHandler XtRemovel nput: Input handler

invalidProcedure
invalidResourceCount
invalidResourceName
invalidShell
invalidSizeOverride
missingCharsetList
noActionProc
noColormap

noFont

noFont

noFont

notlnConvertSelection

notRectObj
notRectObj
nullWidget
r3versionMismatch
translationError
trandlationError
translationError

trandlationError

set values_almost
getResources
computeArgs
xtTranslateCoords
xtDependencies
cvtStringToFontSet
xtCall ActionProc
cvtStringToPixel
cvtStringToFont
cvtStringToFontSet
cvtStringToFontStruct

xtGetSel ectionRequest

xtChangeM anagedSet

xtManageChildren

xtConvertVarToArgList

widget

nullTable

null Table
ambiguousActions

newActions

not found

set_values amost procedure
shouldn't be NULL

resource count > 0 on NULL
resource list

Cannot find resource name %s
as argument to conversion

Widget has no shell ancestor

Representation size %d must
match superclass's to override
%s

Missing charsetsin String to
FontSet conversion

No action proc named "%s" is
registered for widget "%s"
Cannot allocate colormap entry
for "%s"

Unable to load any usable
1SO8859-1 font

Unable to load any usable
fontset

Unable to load any usable
1S08859-1 font

XtGetSelectionRequest or
XtGetSel ectionParameters
called for widget "%s" outside
of ConvertSelection proc
child "%s", class %sisnot a
RectOb;

child "%s", class %sis not a
RectObj

XtVaTypedArg conversion
needs non-NUL L widget handle

Shell Widget class %s binary
compiled for R3

Can't remove accelerators from
NULL table

Tried to remove nonexistent
accelerators

Overriding earlier trangdlation
manager actions.

New actions are:%s

243

Intrinsics Error Messages

Name Type Default M essage

translationError null Table table to (un)merge must not be
null

translationError null Table Can't translate event through
NULL table

trandlationError oldActions Previous entry was: %s %s

trandationError
trandlationError

trand ationParseError
trandlationParseError
trandl ationParseError

trand ationParseError
trandlationParseError
typeConversionError

unknownType
unknownType

versionMismatch

wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters
wrongParameters

wrongParameters

wrongParameters

unboundActions
xtTrandatelnitialize

missingComma
nonLatinl
parseError

parseString
showLine
noConverter

xtConvertVarToArgList
xtGetTypedArg

widget

cvtintOrPixel ToX Color
cvtintToBool
cvtintToBoolean
cvtintToFl oat
cvtIntToFont
cvtintToPixel
cvtIntToPixmap
cvtintToShort

cvtIntToUnsignedChar

cvtStringToAcceleratorTable

Actions not found: %s
Initializing Translation manager
twice.

... possibly dueto missing',' in
event sequence.

... probably dueto non-Latinl
character in quoted string

translation table syntax error:
%s

Missing """
... found while parsing '%s

No type converter registered for
'%s' to '%s conversion.

Unable to find type of resource
for conversion

Unable to find type of resource
for conversion

Widget class %s version
mismatch (recompilation
needed):\\n widget %d vs.
intrinsics %d.

Pixel to color conversion needs
screen and colormap arguments

Integer to Bool conversion
needs no extra arguments

Integer to Boolean conversion
needs no extra arguments

Integer to Float conversion
needs no extra arguments

Integer to Font conversion
needs no extra arguments

Integer to Pixel conversion
needs no extra arguments

Integer to Pixmap conversion
needs no extra arguments

Integer to Short conversion
needs no extra arguments

Integer to UnsignedChar
conversion needs no extra
arguments

String to AcceleratorTable
conversion needs no extra
arguments

244

Intrinsics Error Messages

Name Type Default M essage
wrongParameters cvtStringToAtom String to Atom conversion
needs Display argument
wrongParameters cvtStringToBool String to Bool conversion needs
no extra arguments
wrongParameters cvtStringToBoolean String to Boolean conversion
needs no extra arguments
wrongParameters cvtStringToCommandArgArray String to CommandArgArray
conversion needs no extra
arguments
wrongParameters cvtStringToCursor String to cursor conversion
needs display argument
wrongParameters cvtStringToDimension String to Dimension conversion
needs no extra arguments
wrongParameters cvtStringToDirectoryString String to DirectoryString
conversion needs no extra
arguments
wrongParameters cvtStringToDisplay String to Display conversion
needs no extra arguments
wrongParameters cvtStringToFile String to File conversion needs
no extra arguments
wrongParameters cvtStringToFl oat String to Float conversion needs
no extra arguments
wrongParameters cvtStringToFont String to font conversion needs
display argument
wrongParameters cvtStringToFontSet String to FontSet conversion
needs display and locale
arguments
wrongParameters cvtStringToFontStruct String to font conversion needs
display argument
wrongParameters cvtStringToGravity String to Gravity conversion
needs no extra arguments
wrongParameters cvtStringTol nitia State String to Initial State conversion
needs no extra arguments
wrongParameters cvtStringTolnt String to Integer conversion
needs no extra arguments
wrongParameters cvtStringToPixel String to pixel conversion needs
screen and colormap arguments
wrongParameters cvtStringToRestartStyle String to RestartStyle
conversion needs no extra
arguments
wrongParameters cvtStringToShort String to Integer conversion
needs no extra arguments
wrongParameters cvtStringToTrandlationTable String to TrandlationTable
conversion needs no extra
arguments
wrongParameters cvtStringToUnsignedChar String to Integer conversion

needs no extra arguments

245

Intrinsics Error Messages

Name Type Default M essage

wrongParameters cvtStringToVisual String to Visua conversion
needs screen and depth
arguments

wrongParameters cvtXColorToPixel Color to Pixel conversion needs
no extra arguments

wrongParameters freeCursor Free Cursor requires display
argument

wrongParameters freeDirectoryString Free Directory String requires
no extra arguments

wrongParameters freeFile Free File requires no extra
arguments

wrongParameters freeFont Free Font needs display
argument

wrongParameters freeFontSet FreeFontSet needs display and
locale arguments

wrongParameters freeFontStruct Free FontStruct requires display
argument

wrongParameters freePixel Freeing a pixel requires screen

and colormap arguments

246

Appendix E. Defined Strings

The St ri ngDef s. h header file contains definitions for the following resource name, class, and
representation type symbolic constants.

Resour ce names:

Symbol Definition
XtNaccelerators "accelerators'
XtNallowHoriz "alowHoriz"
XtNallowVert "dlowVert"
XtNancestorSensitive "ancestorSensitive"
XtNbackground "background”
XtNbackgroundPixmap "backgroundPixmap"”
XtNbitmap "bitmap”
XtNborder "borderColor"
XtNborderColor "borderColor"
XtNborderPixmap "borderPixmap"
XtNborderWidth "borderWidth"
XtNcallback "callback"
XtNchangeHook "changeHook"
XtNchildren “children”
XtNcolormap "colormap"
XtNconfigureHook "configureHook"
XtNcreateHook "createHook"
XtNdepth "depth”
XtNdestroyCallback "destroyCallback"
XtNdestroyHook "destroyHook™
XtNeditType "editType"
XtNfile "file"

XtNfont "font"
XtNfontSet "fontSet"
XtNforceBars "forceBars'
XtNforeground "foreground"
XtNfunction "function"
XtNgeometryHook ""geometryHook"
XtNheight "height"
XtNhighlight "highlight"
XtNhSpace "hSpace”
XtNindex "index"

XtNinitial ResourcesPersistent "initial ResourcesPersistent"
XtNinnerHeight "innerHeight"
XtNinnerWidth "innerWidth"
XtNinnerWindow "innerWindow"
XtNinsertPosition "insertPosition"

247

Defined Strings

Symbol Definition
XtNinternal Height "internalHeight"
XtNinterna Width "internal Width"
XtNjumpProc "jumpProc"
XtNjustify "justify"
XtNknobHeight "knobHeight"
XtNknoblndent "knobl ndent"
XtNknobPixel "knobPixel"
XtNknobWidth "knobWidth"
XtNlabel "label"
XtNlength "length”
XtNlowerRight "lowerRight"
XtNmappedWhenManaged "mappedWhenM anaged"
XtNmenuEntry "menuEntry"
XtNname "name"
XtNnotify "notify"
XtNnumChildren "numChildren”
XtNnumShells "numsShells’
XtNorientation "orientation”
XtNparameter "parameter"
XtNpixmap "pixmap"

XtNpopupCallback
XtNpopdownCallback
XtNresize
XtNreverseVideo
XtNscreen
XtNscrollProc
XtNscrollDCursor
XtNscrolIHCursor
XtNscrollL Cursor
XtNscrollRCursor
XtNscrollUCursor
XtNscrollV Cursor
XtNselection
XtNselectionArray
XtNsensitive
XtNshells
XtNshown
XtNspace
XtNstring
XtNtextOptions
XtNtextSink
XtNtextSource

"popupCallback"
"popdownCallback"
"resize"
"reverseVideo"
"screen”
"scrollProc”
"scrol|DCursor"
"scrolIHCursor"
"scrol L Cursor"
"scrolIRCursor"
"scrollUCursor"
"scrollV Cursor”
"selection”
"selectionArray"
"sensitive"
"shells'

"shown"

space
"string"
"textOptions’
"textSink"
"textSource"

248

Defined Strings

Symbol Definition
XtNthickness "thickness'
XtNthumb "thumb"
XtNthumbProc "thumbProc"
XtNtop "top"
XtNtrandlations "trandations’
XtNunrealizeCallback "unrealizeCallback"
XtNupdate "update”
XtNuseBottom "useBottom"
XtNuseRight "useRight"
XtNvalue "value"
XtNvSpace "vSpace"
XtNwidth "width"
XtNwindow "window"
XtNX "x"

XtNy "y

Resour ce classes:

Symbol Definition
XtCAccelerators "Accelerators'
XtCBackground "Background"
XtCBitmap "Bitmap"
XtCBoolean "Boolean"
XtCBorderColor "BorderColor"
XtCBorderWidth "BorderWidth"
XtCCallback "Callback"
XtCColormap "Colormap"
XtCColor "Color"
XtCCursor "Cursor"
XtCDepth "Depth"
XtCEditType "EditType"
XtCEventBindings "EventBindings"
XtCFile "File"
XtCFont "Font"
XtCFontSet "FontSet"
XtCForeground "Foreground"
XtCFraction "Fraction"
XtCFunction "Function”
XtCHeight "Height"
XtCHSpace "HSpace"
XtClndex "Index"
XtClnitial ResourcesPersistent "Initial ResourcesPersi stent"
XtClnsertPosition "InsertPosition"”

249

Defined Strings

Symbol Definition
XtClnterval "Interval”
XtClustify " Justify"
XtCKnoblndent "Knoblndent"
XtCKnobPixel "KnobPixel"
XtCLabe "Label"
XtCLength "Length"

XtCM appedWhenM anaged "M appedwWhenManaged”
XtCMargin "Margin"
XtCMenuEntry "MenuEntry"
XtCNotify "Notify"
XtCOrientation "Orientation"
XtCParameter "Parameter”
XtCPixmap "Pixmap"
XtCPosition "Position"
XtCReadOnly "ReadOnly"
XtCResize "Resize"
XtCReverseVideo "ReverseVideo"
XtCScreen "Screen”
XtCScrollProc "ScrollProc”
XtCScrol| DCursor "Scrol|DCursor"
XtCScrollHCursor "Scroll[HCursor"
XtCScrollL Cursor "ScrollL Cursor™”
XtCScrolIRCursor "ScrolIRCursor"
XtCScrollUCursor "ScrollUCursor”
XtCScrollV Cursor "ScrollV Cursor”
XtCSelection "Selection"
XtCSelectionArray "SelectionArray”
XtCSensitive "Sensitive"
XtCSpace " Space”
XtCString " String"
XtCTextOptions "TextOptions"
XtCTextPosition "TextPosition"
XtCTextSink "TextSink"
XtCTextSource "TextSource"
XtCThickness "Thickness'
XtCThumb "Thumb"
XtCTrand ations "Trandations”
XtCValue "Vaue'

XtCV Space "V Space”
XtCWidth "Width"
XtCWindow "Window"
XtCX "X

250

Defined Strings

Symbol Definition

XtCY "y

Resour ce representation types:

Symbol Definition
XtRAcceleratorTable "AcceleratorTable"
XtRAtom "Atom"
XtRBitmap "Bitmap"

XtRBool "Bool"
XtRBoolean "Boolean"
XtRCallback "Callback"
XtRCdlProc "CallProc"
XtRCardinal "Cardina"
XtRColor "Color"
XtRColormap "Colormap"
XtRCommandArgArray "CommandArgArray"
XtRCursor "Cursor"
XtRDimension "Dimension"

XtRDirectoryString
XtRDisplay
XtREditMode
XtREnum
XtREnvironmentArray
XtRFile
XtRFloat
XtRFont
XtRFontSet
XtRFontStruct
XtRFunction
XtRGeometry
XtRGravity
XtRImmediate
XtRInitial State
XtRInt
XtRJustify
XtRLongBoolean
XtRObject
XtROrientation
XtRPixel
XtRPixmap
XtRPointer
XtRPosition
XtRRestartStyle

"DirectoryString"
"Display”
"EditMode"
"Enum"
"EnvironmentArray"
"File"

"Float"

"Font"
"FontSet"
"FontStruct”
"Function”
"Geometry"
"Gravity"
"Immediate”
"Initial State"
"Int"

" Justify"
XtRBool
"Object"
"Orientation”
"Pixel"
"Pixmap"
"Pointer"
"Position"
"RestartStyle"

251

Defined Strings

Symbol Definition
XtRScreen "Screen"
XtRShort "Short"
XtRSmcConn "SmcConn"
XtRString " String”
XtRStringArray "StringArray”
XtRStringTable "StringTable"
XtRUnsignedChar "UnsignedChar"
XtRTranglationTable "TranglationTable"
XtRVisual "Visua"
XtRWidget "Widget"
XtRWidgetClass "WidgetClass"
XtRWidgetList "WidgetList"
XtRWindow "Window"

Boolean enumer ation constants:

Symbol Definition
XtEoff "of "
XtEfalse "false"
XtEno "no"
XtEon "on"
XtEtrue "true"
XtEyes "yes'

Orientation enumer ation constants:

Symbol Definition
XtEvertical "vertical"
XtEhorizonta "horizontal"

Text edit enumer ation constants:

Symbol Definition
XtEtextRead "read"
XtEtextAppend "append"
XtEtextEdit "edit"

Color enumer ation constants;

Symbol Definition
XtExtdefaultbackground "xtdefaultbackground"
XtExtdefaultforeground "xtdefaultforeground”

Font constant:

Symbol Definition

XtExtdefaultfont "xtdefaultfont”

Hooksfor External Agents constants:

252

Defined Strings

Symbol Definition
XtHcreate "Xtcreate"
XtHsetVaues "XtsetVaues'

XtHmanageChildren
XtHunmanageChildren
XtHmanageSet
XtHunmanageSet
XtHrealizeWidget
XtHunrealizeWidget
XtHaddCallback
XtHaddCallbacks
XtHremoveCallback
XtHremoveCallbacks
XtHremoveAllCallbacks
XtHaugmentTranslations
XtHoverrideTranslations
XtHuninstall Translations
XtHsetK eyboardFocus
XtHsetWM Col ormapWindows
XtHmapWidget
XtHunmapWidget
XtHpopup
XtHpopupSpringL oaded
XtHpopdown
XtHconfigure
XtHpreGeometry
XtHpostGeometry
XtHdestroy

"XtmanageChildren"
"XtunmanageChildren"
"XtmanageSet"
"XtunmanageSet"
"XtrealizeWidget"
"XtunrealizeWidget"
"XtaddCallback"
"XtaddCallbacks"
"XtremoveCallback"
"XtremoveCallbacks'
"XtremoveAllCallbacks"
"XtaugmentTranslations"
"XtoverrideTrangations'
"Xtuninstall Trang ations"
"XtsetK eyboardFocus'
"XtsetWM Col ormapWindows"
"XtmapWidget"
"XtunmapWidget"
"Xtpopup"
"XtpopupSpringL caded"
"Xtpopdown"
"Xtconfigure"
"XtpreGeometry"
"XtpostGeometry"
"Xtdestroy"

The Shel I . h header file contains definitions for the following resource name,
representation type symbolic constants.

Resour ce names:

Symbol Definition
XtNallowShellResize "alowShellResize"
XtNargc "argc"

XtNargv "argv"
XtNbaseHeight "baseHeight"
XtNbaseWidth "baseWidth"
XtNcancel Callback "cancel Callback"
XtNclientL eader "clientLeader"

XtNcloneCommand
XtNconnection
XtNcreatePopupChildProc

"cloneCommand"
"connection”
"createPopupChildProc”

253

class, and

Defined Strings

Symbol Definition
XtNcurrentDirectory "currentDirectory”
XtNdieCallback "dieCallback"
XtNdiscardCommand "discardCommand"
XtNenvironment "environment”
XtNerrorCallback "errorCallback"
XtNgeometry "geometry"
XtNheightlnc "heightlnc"
XtNiconMask "iconMask"
XtNiconName "iconName"

XtNiconNameEncoding
XtNiconPixmap
XtNiconWindow
XtNiconX

XtNiconY
XtNiconic

XtNinitial State
XtNinput
XtNinteractCallback
XtNjoinSession
XtNmaxAspectX
XtNmaxAspectY
XtNmaxHeight
XtNmaxWidth
XtNminAspectX
XtNminAspectY
XtNminHeight
XtNminWidth
XtNoverrideRedirect
XtNprogramPath
XtNresignCommand
XtNrestartCommand
XtNrestartStyle
XtNsaveCallback
XtNsaveCompl eteCallback
XtNsaveUnder
XtNsessionlD
XtNshutdownCommand
XtNtitle
XtNtitleEncoding
XtNtransient
XtNtransientFor
XtNurgency

"iconNameEncoding"
"iconPixmap"
"iconwWindow"
"iconX"

"iconY"

"iconic"

"initial State”
"input"
"interactCallback"
"joinSession”
"maxAspectX"
"maxAspectY"
"maxHeight"
"maxWidth"
"minAspectX"
"minAspectY"
"minHeight"
"minwWidth"
"overrideRedirect"
"programPath”
"resignCommand"
"restartCommand”
"restartStyle"
"saveCallback"
"'saveCompl eteCal | back™
"saveUnder"
"sessionID"
""shutdownCommand"
"title"
"titleEncoding”
"transient”
"transientFor"
"urgency"

254

Defined Strings

Symbol Definition
XtNvisual "visua"
XtNwaitForwm "waitforwm"
XtNwaitforwm "waitforwm"
XtNwidthinc "widthinc"
XtNwindowGroup "windowGroup"
XtNwindowRole "windowRole"
XtNwinGravity "winGravity"
XtNwmTimeout "wmTimeout"
Resour ce classes:

Symbol Definition
XtCAllowShellResize "alowShellResize"
XtCArgc "Argc"

XtCArgv "Argv"
XtCBaseHeight "BaseHeight"
XtCBaseWidth "BaseWidth"
XtCClientL eader "ClientL eader"
XtCCloneCommand "CloneCommand"

XtCConnection

XtCCreatePopupChildProc

XtCCurrentDirectory
XtCDiscardCommand
XtCEnvironment
XtCGeometry
XtCHeightinc
XtClconMask
XtClconName
XtClconNameEncoding
XtClconPixmap
XtClconWindow
XtClconX

XtClconY

XtClconic

XtClnitia State
XtClnput
XtCJoinSession
XtCMaxAspectX
XtCMaxAspectY
XtCMaxHeight
XtCMaxWidth
XtCMinAspectX
XtCMinAspectY

"Connection”

" CreatePopupChildProc"
"CurrentDirectory"
"DiscardCommand"
"Environment"
"Geometry"
"HeightInc"
"lconMask"
"lconName"
"lconNameEncoding”
"l conPixmap"
"lconWindow"
"lconX"

"lconY™

"Iconic"

"Initial State"

"Input"
"JoinSession"
"MaxAspectX"
"MaxAspectY"
"MaxHeight"
"MaxWidth"
"MinAspectX"
"MinAspectY"

255

Defined Strings

Symbol Definition
XtCMinHeight "MinHeight"
XtCMinWidth "MinWidth"
XtCOverrideRedirect "OverrideRedirect"
XtCProgramPath "ProgramPath"
XtCResignCommand "ResignCommand"”
XtCRestartCommand "RestartCommand"”
XtCRestartStyle "RestartStyle"
XtCSaveUnder "SaveUnder"
XtCSessionlD "SessionlD"
XtCShutdownCommand " ShutdownCommand"
XtCTitle "Title"
XtCTitleEncoding "TitleEncoding"
XtCTransient "Transient"
XtCTransientFor "TransientFor"
XtCUrgency "Urgency"
XtCVisual "Visual"
XtCWaitForwWm "Waitforwm"
XtCWaitforwm "Waitforwm"
XtCWidthinc "Widthlnc"
XtCWindowGroup "WindowGroup"
XtCWindowRole "WindowRole"
XtCWinGravity "WinGravity"
XtCWmTimeout "WmTimeout"
Resour ce representation types:

Symbol Definition
XtRAtom "Atom"

256

Appendix F. Resource Configuration
Management

Setting and changing resourcesin X applications can be difficult for both the application programmer
and the end user. Resour ce Configuration M anagement (RCM) addressesthis problem by changing
the X I ntrinsi cs toimmediately modify aresource for a specified widget and each child widget
in the hierarchy. In this context, immediate means: no sourcing of a resource file is required; the
application does not need to be restarted for the new resource values to take effect; and the change
occurs immediately.

Themain difference between RCMand the Edi t r es protocol isthat the RCMcustomizing hooksreside
inthel ntri nsi cs and thus are linked with other toolkits such as Motif and the Athena widgets.
However, the Edi t Res protocol requires the application to link with the Edi t Res routinesin the
Xmu library and Xmu is not used by all applicationsthat use Motif. Also, the Edi t Res protocol uses
ClientMessage, whereasthe RCMI nt r i nsi ¢s hooksuse Pr opert yNot i f y events.

X Properties and the Pr opert yNot i fy events are used to implement RCMand allow on-the-fly
resource customization. When the X Toolkit is initialized, two atoms are interned with the strings
Custom Init and Custom Data. Both _Xt Cr eat ePopupShel | and _Xt AppCr eat eShel |
register aPr opert yNot i f y event handler to handle these properties.

A customization tool uses the Custom Init property to ping an application to get the application's
toplevel window. When the application's property notify event handler isinvoked, the handler deletes
the property. No datais transferred in this property.

A customization tool uses the Custom Data property to tell an application that it should change a
resource's value. The data in the property contains the length of the resource name (the number of
bytes in the resource name), the resource name and the new value for the resource. This property's
typeis XA_STRI NGand the format of the string is:

1. Thelength of the resource name (the number of bytes in the resource name)
2. One space character

3. Theresource name

4. One space character

5. Theresource value

When setting the application's resource, the event handler calls functions to walk the application's
widget tree, determining which widgets are affected by the resource string, and then applying the value
with Xt Set Val ues. As the widget tree is recursively descended, at each level in the widget tree
aresource part is tested for a match. When the entire resource string has been matched, the value is
applied to the widget or widgets.

Beforeavalueis set on awidget, it isfirst determined if the last part of theresourceisavalid resource
for that widget. It must also add the resource to the application's resource database and then query it
using specific resource strings that is builds from the widget information.

257

	X Toolkit Intrinsics – C Language Interface
	Table of Contents
	About This Manual
	Chapter 1. Intrinsics and Widgets
	Intrinsics
	Languages
	Procedures and Macros
	Widgets
	Core Widgets
	CoreClassPart Structure
	CorePart Structure
	Core Resources
	CorePart Default Values

	Composite Widgets
	CompositeClassPart Structure
	CompositePart Structure
	Composite Resources
	CompositePart Default Values

	Constraint Widgets
	ConstraintClassPart Structure
	ConstraintPart Structure
	Constraint Resources

	Implementation-Specific Types
	Widget Classing
	Widget Naming Conventions
	Widget Subclassing in Public .h Files
	Widget Subclassing in Private .h Files
	Widget Subclassing in .c Files
	Widget Class and Superclass Look Up
	Widget Subclass Verification
	Superclass Chaining
	Class Initialization: class_initialize and class_part_initialize Procedures
	Initializing a Widget Class
	Inheritance of Superclass Operations
	Invocation of Superclass Operations
	Class Extension Records

	Chapter 2. Widget Instantiation
	Initializing the X Toolkit
	Establishing the Locale
	Loading the Resource Database
	Parsing the Command Line
	Creating Widgets
	Creating and Merging Argument Lists
	Creating a Widget Instance
	Creating an Application Shell Instance
	Convenience Procedure to Initialize an Application
	Widget Instance Allocation: The allocate Procedure
	Widget Instance Initialization: The initialize Procedure
	Constraint Instance Initialization: The ConstraintClassPart initialize Procedure
	Nonwidget Data Initialization: The initialize_hook Procedure

	Realizing Widgets
	Widget Instance Window Creation: The realize Procedure
	Window Creation Convenience Routine

	Obtaining Window Information from a Widget
	Unrealizing Widgets

	Destroying Widgets
	Adding and Removing Destroy Callbacks
	Dynamic Data Deallocation: The destroy Procedure
	Dynamic Constraint Data Deallocation: The ConstraintClassPart destroy Procedure
	Widget Instance Deallocation: The deallocate Procedure

	Exiting from an Application

	Chapter 3. Composite Widgets and Their Children
	Addition of Children to a Composite Widget: The insert_child Procedure
	Insertion Order of Children: The insert_position Procedure
	Deletion of Children: The delete_child Procedure
	Adding and Removing Children from the Managed Set
	Managing Children
	Unmanaging Children
	Bundling Changes to the Managed Set
	Determining if a Widget Is Managed

	Controlling When Widgets Get Mapped
	Constrained Composite Widgets

	Chapter 4. Shell Widgets
	Shell Widget Definitions
	ShellClassPart Definitions
	ShellPart Definition
	Shell Resources
	ShellPart Default Values

	Session Participation
	Joining a Session
	Saving Application State
	Requesting Interaction
	Interacting with the User during a Checkpoint
	Responding to a Shutdown Cancellation
	Completing a Save

	Responding to a Shutdown
	Resigning from a Session

	Chapter 5. Pop-Up Widgets
	Pop-Up Widget Types
	Creating a Pop-Up Shell
	Creating Pop-Up Children
	Mapping a Pop-Up Widget
	Unmapping a Pop-Up Widget

	Chapter 6. Geometry Management
	Initiating Geometry Changes
	General Geometry Manager Requests
	Resize Requests
	Potential Geometry Changes
	Child Geometry Management: The geometry_manager Procedure
	Widget Placement and Sizing
	Preferred Geometry
	Size Change Management: The resize Procedure

	Chapter 7. Event Management
	Adding and Deleting Additional Event Sources
	Adding and Removing Input Sources
	Adding and Removing Blocking Notifications
	Adding and Removing Timeouts
	Adding and Removing Signal Callbacks

	Constraining Events to a Cascade of Widgets
	Requesting Key and Button Grabs

	Focusing Events on a Child
	Events for Drawables That Are Not a Widget's Window

	Querying Event Sources
	Dispatching Events
	The Application Input Loop
	Setting and Checking the Sensitivity State of a Widget
	Adding Background Work Procedures
	X Event Filters
	Pointer Motion Compression
	Enter/Leave Compression
	Exposure Compression

	Widget Exposure and Visibility
	Redisplay of a Widget: The expose Procedure
	Widget Visibility

	X Event Handlers
	Event Handlers That Select Events
	Event Handlers That Do Not Select Events
	Current Event Mask
	Event Handlers for X11 Protocol Extensions

	Using the Intrinsics in a Multi-Threaded Environment
	Initializing a Multi-Threaded Intrinsics Application
	Locking X Toolkit Data Structures
	Locking the Application Context
	Locking the Process

	Event Management in a Multi-Threaded Environment

	Chapter 8. Callbacks
	Using Callback Procedure and Callback List Definitions
	Identifying Callback Lists
	Adding Callback Procedures
	Removing Callback Procedures
	Executing Callback Procedures
	Checking the Status of a Callback List

	Chapter 9. Resource Management
	Resource Lists
	Byte Offset Calculations
	Superclass-to-Subclass Chaining of Resource Lists
	Subresources
	Obtaining Application Resources
	Resource Conversions
	Predefined Resource Converters
	New Resource Converters
	Issuing Conversion Warnings
	Registering a New Resource Converter
	Resource Converter Invocation

	Reading and Writing Widget State
	Obtaining Widget State
	Widget Subpart Resource Data: The get_values_hook Procedure
	Widget Subpart State

	Setting Widget State
	Widget State: The set_values Procedure
	Widget State: The set_values_almost Procedure
	Widget State: The ConstraintClassPart set_values Procedure
	Widget Subpart State
	Widget Subpart Resource Data: The set_values_hook Procedure

	Chapter 10. Translation Management
	Action Tables
	Action Table Registration
	Action Names to Procedure Translations
	Action Hook Registration

	Translation Tables
	Event Sequences
	Action Sequences
	Multi-Click Time

	Translation Table Management
	Using Accelerators
	KeyCode-to-KeySym Conversions
	Obtaining a KeySym in an Action Procedure
	KeySym-to-KeyCode Conversions
	Registering Button and Key Grabs for Actions
	Invoking Actions Directly
	Obtaining a Widget's Action List

	Chapter 11. Utility Functions
	Determining the Number of Elements in an Array
	Translating Strings to Widget Instances
	Managing Memory Usage
	Sharing Graphics Contexts
	Managing Selections
	Setting and Getting the Selection Timeout Value
	Using Atomic Transfers
	Atomic Transfer Procedures
	Getting the Selection Value
	Setting the Selection Owner

	Using Incremental Transfers
	Incremental Transfer Procedures
	Getting the Selection Value Incrementally
	Setting the Selection Owner for Incremental Transfers

	Setting and Retrieving Selection Target Parameters
	Generating MULTIPLE Requests
	Auxiliary Selection Properties
	Retrieving the Most Recent Timestamp
	Retrieving the Most Recent Event

	Merging Exposure Events into a Region
	Translating Widget Coordinates
	Translating a Window to a Widget
	Handling Errors
	Setting WM_COLORMAP_WINDOWS
	Finding File Names
	Hooks for External Agents
	Hook Object Resources
	Querying Open Displays

	Chapter 12. Nonwidget Objects
	Data Structures
	Object Objects
	ObjectClassPart Structure
	ObjectPart Structure
	Object Resources
	ObjectPart Default Values
	Object Arguments to Intrinsics Routines
	Use of Objects

	Rectangle Objects
	RectObjClassPart Structure
	RectObjPart Structure
	RectObj Resources
	RectObjPart Default Values
	Widget Arguments to Intrinsics Routines
	Use of Rectangle Objects

	Undeclared Class
	Widget Arguments to Intrinsics Routines

	Chapter 13. Evolution of the Intrinsics
	Determining Specification Revision Level
	Release 3 to Release 4 Compatibility
	Additional Arguments
	set_values_almost Procedures
	Query Geometry
	unrealizeCallback Callback List
	Subclasses of WMShell
	Resource Type Converters
	KeySym Case Conversion Procedure
	Nonwidget Objects

	Release 4 to Release 5 Compatibility
	baseTranslations Resource
	Resource File Search Path
	Customization Resource
	Per-Screen Resource Database
	Internationalization of Applications
	Permanently Allocated Strings
	Arguments to Existing Functions

	Release 5 to Release 6 Compatibility
	Widget Internals
	General Application Development
	Communication with Window and Session Managers
	Geometry Management
	Event Management
	Resource Management
	Translation Management
	Selections
	External Agent Hooks

	Release 6 to Release 7 Compatibility
	Changes During X11R6
	Changes During X11R7
	Converting to Standard C

	Appendix A. Resource File Format
	Appendix B. Translation Table Syntax
	Appendix C. Compatibility Functions
	Appendix D. Intrinsics Error Messages
	Appendix E. Defined Strings
	Appendix F. Resource Configuration Management

